
Chapter 20

Dynamical Changes Induced by Strong

Electromagnetic Discharges in Earthquakes’

Waiting Time Distribution at the Bishkek Test

Area (Central Asia)

T. Chelidze, V. de Rubeis, T. Matcharashvili, and P. Tosi

Abstract From 1 August 1983 to 28 March 1990 at the Bishkek electromagnetic

(EM) test site (Northern Tien Shan and Chu Valley area, Central Asia), strong

currents, up to 2.5 kA, were released at a 4.5 km long electrical (grounded) dipole

by discharge of MHD or large batteries. This area is seismically active and a

catalogue with about 14100 events from 1975 to 1996 has been analyzed. The

seismic catalogue was divided into three parts: the first, 1975–1983, with no EM

experiments; the second, 1983–1988, during EM experiments; and the third part,

1988–1996, after the experiments. Qualitative and quantitative time series non

linear analysis was applied to waiting times of earthquakes to the above three

sub-catalogue periods. Qualitative and quantitative methods used include iterated

function systems (IFS), Lempel-Ziv algorithmic complexity measure (LZC), corre-

lation integral calculation, recurrence quantification analysis (RQA), and Tsallis

entropy calculation. General features of temporal distribution of earthquakes

around the test area reveal properties of dynamics close to low dimensional non-

linearity. Strong EM discharges lead to the increase of extent of regularity in

earthquakes’ temporal distribution. After cessation of EM experiments, the earth-

quakes’ temporal distribution becomes much more random than before the experi-

ments. To avoid non-valid conclusions, several tests were applied to our data set:

differentiation of the time series was applied to check the results that were not

affected by non-stationarity, followed by surrogate data approach in order to reject

the hypothesis that dynamics belongs to the colored noise type. Small earthquakes,

below the completeness threshold, were added to the analysis in order to check the

robustness of the results.
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20.1 Introduction

The dynamics of seismic process is far from being clearly understood and modeled;

under a multidisciplinary approach during last years, several aspects have arisen

showing that seismicity is certainly not a pure random process. Magnitude, waiting

time and spatial distribution of earthquakes present features of self-similarity or

fractal character, as evidenced by several authors [Turcotte, 1997; De Rubeis et al.,
1993]. On the other hand, seismicity cannot be deterministically explained although

efforts to show its quasi periodic character have been numerous. A direct conse-

quence of this situation is the almost complete impossibility to precisely predict

earthquakes [Main, 1999; Geller et al., 1997].
In the last years, nonlinear dynamics has offered several tools to analyze and

characterize the seismicity. These qualitative and quantitative tools may help to

distinguish between a purely random process and a complicate process driven by a

finite, limited set of rules. The enormous gap between “simple” linear deterministic

models and random, complicate and strongly unpredictable processes seems to be

filled with these new analytical tools. The aim is to render tractable, in a certain

way, phenomena and data, otherwise not clearly depicted.

In the present work, the influence of strong EM discharges on earthquakes

temporal distribution has been investigated.

Experiments on triggering effect of MHD (magnetohydrodynamic) soundings

on the microseismic activity of the region have been performed in 1975–1996 by

IVTAN (Institute of High Temperatures of Russian Academy of Sciences) in the

Central Asia test area [Tarasov, 1997; Tarasov et al., 1999; Jones, 2001]. During

these experiments, deep electrical sounding of the crust was carried out at the Bishkek

test site in the years 1983 to 1989. The source of electrical energy was MHD

generator, and the load was an electrical dipole of 0.4 Ohm resistance with electrodes

located at a distance of 4.5 km from each other. When the generator was fired, the

load current was 0.28–2.8 kA, the sounding pulses had durations of 1.7 to 12.1 s, and

the energy generated was mostly in the range of 1.2–23.1 MJ [Volykhin et al., 1993].

Evidences of some relationships between EM discharges and seismic activity

have been pointed out under a statistical aspect and in a time range of days after

EM experiments [Tarasov, 1997]. Here the general dynamical aspect is considered.

A good seismic catalogue of the area has been available well before, during and well

after this period. A simple causal relationship between the two processes is not clearly

evident. Relations appear to be present but the data noise is also relevant. It is useful to

investigate if the seismic dynamics, in periods before, during and after EM experi-

ments is influenced by the introduction of strong electric current into the ground.

20.2 Methods

Investigation was performed according to general scheme of time series nonlinear

analysis [Abarbanel et al. 1993; Sprott and Rowlands, 1995; Kantz and Schreiber,

1997; Goltz, 1998; Hegger and Kantz, 1999]. In general, data analysis can be
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performed firstly under a more qualitative and visual approach and successively a

more quantitative methodology can be applied.

Qualitative approach includes a visual inspection of the reconstructed phase

space. Namely, p-dimensional phase space from the scalar time sequences was

reconstructed by the method of time delay [Packard et. al, 1980, Takens, 1981].

According to Takens theorem, it is possible to catch the essential dynamical

properties of a system by a reconstruction of its phase space by only one variable.

Two- and three-dimensional phase space portraits, encapsulating the essential

dynamical properties of the analyzed complex process, were used as qualitative

tests. Other qualitative tools have also been used, such as Iterated Function Systems

(IFS) [Jeffrey, 1992] and Recurrence Plots (RP) [Eckman et al. 1987].

Generally, the recurrence analysis is a graphical method designed to locate

hidden recurring patterns and structure in time series. The recurring pattern (RP)

is defined as:

Ri; j ¼ Yðei � �xi �~xj
�� ��Þ; (20.1)

where ei is a cut-off distance (often e ¼ 0�1s,with s the standard deviation), and

YðxÞ is the Heaviside function. According to Eckman et al. (1987), the values one

and zero in this matrix are commonly visualized as black and white. The black

points indicate the recurrences of the investigated dynamical system revealing their

hidden regular and clustering properties. By definition, RP has black main diagonal

(line of identity) formed by distances in matrix compared to each other. In order to

understand RP it should be stressed that it visualizes distance matrix which repre-

sents autocorrelation in the series at all possible time (distance) scales. As far as

distances are computed for all possible pairs, elements near the diagonal on the RP

plots correspond to short range correlation, whereas the long range correlations are

revealed by the points distant from the diagonal. Hence, if the analyzed dynamics

(time series) is deterministic (ordered, regular), then the recurrence plot shows short

line segments parallel to the main diagonal.

Qualitative patterns of unknown dynamics presented as fine structure of RP are

often too difficult to be considered in detail. Therefore, one uses a modern

quantitative method of analysis of complex dynamics for RP approach (Recur-

rence Quantitative Analysis or RQA) [Zbilut and Webber, 1992]. RQA is espe-

cially useful to overcome the difficulties often encountered dealing with

nonstationary and rather short real data sets. As a quantitative tool of complex

dynamics analysis, RQA defines several measures mostly based on diagonally

oriented lines in the recurrence plots: recurrence rate, determinism, maximal

length of diagonal structures, entropy, trend etc. In the present work, recurrence

rate RRðtÞ and determinism DETðtÞ measures, based on an analysis of diagonal

oriented lines in the recurrence plot, have been calculated [Weber and Zbilut,

1994; Marwan et al., 2002].

Generally speaking, the recurrence rate RRðtÞ is the ratio of all recurrent states

(recurrence points) to all possible states and is therefore the probability of the

recurrence of a certain state. Stochastic behavior causes very short diagonals,

whereas deterministic behavior causes longer diagonals.
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The ratio of recurrence points forming diagonal structures to all recurrence

points is called the determinism, DETðtÞ. DETðtÞ is the proportion of recurrence

points forming long diagonal structures consisting of all recurrence points. Again,

stochastic and heavily fluctuating data cause none or only short diagonals, whereas

deterministic systems cause longer diagonals.

An Iterated Function System (IFS) is an iteration of Hutchinson operator for

every finite set of functions in some space which maps a set of points to another set

of points. If Hutchinson operator is repeatedly applied to a compact set, in the limit

it will render the unique attractor of the IFS [Peitgen et al., 1992]. For the purpose of

time series analysis, IFS attractors can be used as a qualitative measure of self

similarity of analysed dynamics (the greater the order in time series, the more

regular the structures in the IFS attractor). We use the IFS as an additional qualita-

tive tool for detection of hidden structure in the analysed time series [Sprott and

Rowlands, 1995].

These tests enable to accomplish first qualitative visual inspection of unknown

dynamics and helps to uncover general properties of analyzed process. Qualitative

analysis allows revealing possible existence of specific attractors, e.g., strange ones

which point to the deterministic chaotic behavior.

Among others, for quantitative analysis of earthquakes dynamics, correlation

integral calculation of the reconstructed phase space of temporal distribution has

been performed [Abarbanel et al., 1993; Kantz and Schreiber, 1997; Hegger and

Kantz, 1999]. This approach is based on the idea of correlation sum. Correlation

sum CðrÞ of set of points in the vector space is defined as the fraction of all possible
pairs of points which are closer to each other than a given distance r. The basic

formula useful for practical application is

CðrÞ ¼ 2

NðN � 1Þ
XN

i¼1

XN

j¼iþ1

Yðr � xi � xj
�� ��Þ; (20.2)

whereYðxÞ is the Heaviside step function,YðxÞ ¼ 0 if x < 0 andYðxÞ ¼ 1 if x � 0,

xi � xj
�� �� is the Euclidian norm, i ¼ j being excluded. For fractal systems, if the

time series are long enough and r is small, the CðrÞ / rnrelationship is correct.

Commonly, such a dependence is correct only for the restricted range of r values,
called the scaling region. Correlation dimension n or d2 is defined as

n ¼ d2 ¼ lim
r!0

logCðrÞ
logðrÞ : (20.3)

In practice, d2 value is found from the slopes of logCðrÞ versus log r curves for
different phase space dimensions. The correlation dimension of unknown process is

the saturation value of d2, which does not change by increasing the phase space

dimension.

In order to reduce possible spurious conclusions about considered dynamics, noise

reduction and surrogate testing methodologies were used [Kantz and Schreiber,1997;

Hegger and Kantz, 1999].
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The entropy calculation according to Tsallis [1988, 1998] has also been used as a

measure of the complexity in earthquakes time distribution

Sq ¼ k
1

q� 1
ð1�

Xw

i¼1
pqi Þ; (20.4)

where pi are the probabilities of the separate configurations (W) and q is intrinsic

parameter with a value greater than zero which demonstrates the correlation

between subsystems.

Besides, as an additional quantitative test for relatively short time series, Lempel-

Ziv’s algorithmic complexity measure (LZC) was calculated [Lempel and Ziv, 1976].

The LZC is based on the transformation of the original one-dimensional time series

into a finite symbol sequence and is defined as CLZ ¼ lim
N!1

sup
LðnÞ
N , where N is the

length of original time series, and LðNÞ � NwðNÞðlogb NWðNÞ þ 1Þ is the total length
of encoded sequence, with NwðNÞ � N being the total number of code words. Being

one of the tools for nonlinear analysis of time series, LZC is especially suitable

for relatively short real data sets because it is not so demanding as concerns the

time series length as other methods [Zhang and Thakor, 1999; Matcharashvili and

Janiashvili, 2001].

20.3 Data and Analysis

In the present study nonlinear analysis has been performed on about 14100 time

intervals (in seconds) between earthquakes contained in the IVTAN catalogue

(1975–1996). In the original catalogue, the energy of the events was expressed as

energy class, which we converted to magnitude using the following relation:

m ¼ E� 4

1:8
(20.5)

where m is magnitude and E is the energy class.

Completeness of the catalogue was investigated first by considering the reali-

zation of the Gutenberg-Richter relationship at low magnitudes: departure from

a straight line was interpreted as a lack of completeness at low magnitudes. As a

result, the catalogue was considered complete, under the sole magnitude aspect,

for m � 1:7. The Gutenberg-Richter b-value was found to be equal to 0.83 with

a reasonably good fit. Earthquakes with magnitude higher than 6 seem to show

behavior typical of characteristic events.

A second test was oriented to check the time completeness. As is well known,

a catalogue’s completeness changes with time, usually as a result of improving

seismic-network performance (e.g., by increasing the number of stations), leading

to greater magnitude sensitivity. The completeness analysis was performed by

employing the method of Mulargia et al. (1987). The method consists in separating
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all events into magnitude classes and plotting separately the cumulative number of

events versus time. Assuming that during the considered time interval the seismic-

ity had a constant rate, the flat behavior in the beginning of the time period may be

due to a lack of data; this is normal for low-magnitude ranges.

Only for magnitudes higher than 2.0 our catalogue is complete over the entire

time period (number of earthquakes n ¼ 5297). If a lower magnitude limit is

desired, the time period from year 1980 is more appropriate (Fig. 20.1). As a result

of the analysis performed, a relatively complete catalogue was obtained with a

lower magnitude threshold of 1.7 from the year 1980.

For the present study, the catalogue has been analyzed under the time aspect,

specifically on inter-event (waiting) times. The catalogue subset of waiting times

was used according to the completeness analysis, i.e., the whole time span and

m>2.0. Successively, in order to confirm the results and to test their robustness, all

data used were selected by the same procedure.

20.4 Results and discussion

In Fig. 20.2, the results of qualitative analysis of waiting times sequences above the

mentioned threshold are presented. The results of IFS clumpiness test presented in

Fig. 20.2 a, c, e, [Jeffrey, 1992; Sprott and Rowlands, 1995] and the recurrence plot

analysis in Fig. 20.2 b, d, f [Zbilut andWebber, 1992] reveal that after the beginning

of the experiments some structure in plots is visible, which points to the increased

amount of functional interdependence in earthquake temporal distribution.

As to the quantitative approach, the variation of correlation dimension vs.

dimension of phase space where the reconstructed dynamics is embedded (embed-

ding dimension) is presented in Fig. 20.3. The integral time series (5297 time inter-

vals) for the whole period of observation (1975-1996) containing time intervals

sequences between all events above the threshold reveals clear low correlation

dimension (d2 ¼ 1.22 � 0.43) (asterisks). Shorter time series were also considered.

Namely, 1760 waiting times data before (1975-1983), 1953 waiting times during

MHD experiments (1983-1988) and 1584 waiting times of the period after experi-

ments (1988-1992). Time series before and especially during MHD experiments

also have low correlation dimension (d2< 5). Namely, d2¼ 3.83� 0.80 before and

d2 ¼ 1.04 � 0.35 during experiments. On the other hand, in opposite to what was

mentioned above, after cessation of experiments (Fig. 20.3, triangles) correlation

dimension of waiting times sequences noticeably increases (d2 > 5.0), exceeding

low dimensional threshold (d2 ¼ 5.0). This means that after termination of experi-

ments the extent of regularity or extent of determinism in process of earthquake

temporal distribution decreases. The considered process becomes much more

random both qualitatively (Fig. 20.2. e, f) and quantitatively (Fig. 20.3, triangles).

For clarity, results for random number sequence are also shown in Fig. 20.3

(diamonds).

The found low correlation dimension of waiting interval time series is in good

accordance with the previously published results for the Caucasus [Matcharashvili,
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et al., 2000] as well as with the results of Goltz [1998] for other seismoactive

regions.

This result together with qualitative analysis results shown in Fig. 20.2, provide

evidence that after the beginning of EM discharges the temporal distribution of
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Fig. 20.1 (a) Cumulative number of events versus time for magnitude class step ¼ 0.5. Note that

cumulative number of events is rescaled among magnitude classes. (b) Log cumulative number of

earthquake versus magnitude (Gutenberg-Richter relation); values of regression fit the equation

Y ¼ �0.83� X þ 5.40. Coefficient of determination, R-squared ¼ 0.995
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IFS Clumpiness Test

IFS Clumpiness Test

IFS Clumpiness Test
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ITA.DAT

ITLA.DAT
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Fig. 20.2 Qualitative analysis of temporal distribution of earthquakes (complete catalogue,

M �1.7) before the beginning of EM experiments (1975-1983), during experiments (1983-1988)

and after accomplishing of experiments (1988-1992). IFS-clumpiness test for inter-event time

interval sequences: (a) before experiments, (c) during experiments, (e) after experiments. Recur-

rence plots analysis of waiting times sequences: (b) before experiments, (d) during experiments,

(f) after experiments. Note diagonal lines in IFS plot and compact structure in RP during

experiments
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earthquakes around IVTAN test area becomes more regular, or events of corres-

ponding time series become functionally much more interdependent.

At the same time, the absence of typical phase space structure (not shown here),

IFS and recurrence plot attractors (Fig. 20.2) do not allow to consider the process as

deterministically chaotic.

In order to reduce effects of possible noises, we analyzed waiting time series after

noise reduction procedure [Shreiber, 1993; Kantz and Schreiber, 1997]. Namely, we

used methodology of nonlinear noise reduction (which in fact is phase space

nonlinear filtering) instead of common linear filtering procedures. The latter, as it

is well known, may lead to destroying the original nonlinear structure of analyzed

complex processes [Hegger and Kantz, 1999; Schreiber, 2000]. Nonlinear noise

reduction relies on the exploration of reconstructed phase space of considered

dynamical process instead of frequency information of linear filters [Hegger and

Kantz, 1999; Schreiber, 1993; Kantz and Schreiber, 1997].

Correlation dimension vs. embedding space dimension of noise-reduced time

series is presented in Fig. 20.4. As follows from the obtained results, correlation

dimensions are not essentially affected by unavoidable noises. Therefore, the

results assure that the differences found in d2-phase space dimension (P) depen-

dence before, during, and after experiments (Fig. 20.3) are indeed related to

dynamical changes in temporal distribution of earthquakes after the beginning of

MHD discharges experiments.

When describing unknown dynamics of waiting times fluctuation, differentia-

tion of original time series can be useful to avoid improper conclusions related to

the effects of trends or non-stationarity in data sets, even when those are not clearly

visible (as in the case of considered time series) [Goltz, 1998]. As it is shown in

Fig. 20.5, differentiation of our time series, according to Goltz [1998], does not lead
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to significant changes of the obtained results (see Fig. 20.3). So our results could not

be affected by trends or non-stationarity in the data sets used.

Analysis of differenced time series may be important also in the sense of

inherent dynamical structure testing [Prichard et al., 1994]. Namely, the test is

based on the finding that estimated nonlinear measure (correlation dimension in our

case) for the differentiated series is larger than that estimated for original data, if the

structure of their dynamics is caused by a linear stochasticity. At the same time, for

chaotic (low dimensional) processes these measures are the same. From this point

of view, the analysis of differentiated time series before detailed surrogate testing

provides first additional evidence that variation of waiting times has inherent

nonlinear structure indeed, and that their dynamical properties are not caused by

linear relationships between data. Indeed, curves of Figs. 20.3 and 20.5 are char-

acterized by comparable values of correlation dimension.

Moreover, in order to have a basis for more reasonable rejection of spurious

conclusions caused by possible linear correlations in considered data sets, we have
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used the surrogate data approach to test the null hypothesis that our time series are

generated by a linear stochastic process [Theiler et al., 1992; Rapp et al., 1993, 1994;

Kantz and Schreiber, 1997]. In other words, we would like to reject reliably the

possibility that the revealed dynamics belongs to the colored noise type. Namely,

Random Phase (RP) and Gaussian Scaled Random Phase (GSRP) surrogate sets

for waiting times series were used [Matcharashvili et al., 2000]. The RP surrogate

sets are obtained by destroying the nonlinear structure through randomization of

phases of Fourier transform of original time series and then performing a backward

transformation. The GSRP surrogate sets were generated in a three-step procedure.

At first, a Gaussian set of random numbers was generated, which has the same rank

structure as the original time series. After this phase, randomized surrogates of these

Gaussian sets were constructed. Finally, the rank structure of original time series was

reordered according to the rank structure of the phase randomized Gaussian set

(Theiler, 1992).

In Fig. 20.6, the results are shown of surrogate testing of waiting time sequences

before (a) and during (b) experiments, using d2 as a discriminating metric. For each

of our data sequences, we have generated 75 of RP and GSRP surrogates. There are

several ways to measure difference between the discriminating metric measure of
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original (given by Morig) and surrogate (given by Msurr) time series [Rapp, 1994].

Investigators often use the significance criterion S¼jhMsurr i – Morigj/ssurr, where
ssurr is the standard deviation of Msurr [Theiler, et al, 1992].

The significance criterion S, according to Theiler et al. [1992], for analyzed time

series before experiments is significant: 22.4 � 0.2 for RP and 5.1 � 0.7 for GSRP

surrogates. Consequently, after the beginning of experiments the null hypothesis

that the original time series is a linearly correlated noise was rejected with signifi-

cant value of S criterion: 39.7 � 0.8 for RP and 6.0 �0.5 for GSRP surrogates.

These results can be considered as a strong enough evidence to prove that the

analyzed time series are not a linear stochastic noise and that the corresponding

processes of earthquakes’ temporal distribution before and especially during

experiments are characterized by inherent low-dimensional nonlinear structure.

According to the IVTAN catalogue, each considered time period contains one

large (M 	 6.1–6.3) earthquake. Therefore, in order to refine whether the above

results are caused by special properties of a separate large earthquake or reflect total

changes in dynamics caused by EM discharges, we have analyzed waiting time

sequences (above the appropriate threshold) after each largest event. Namely, 1000

consecutive waiting time intervals after 03.24.78 M ¼ 6.1 (K ¼ 15.0), 01.24.87

M¼ 6.3 (K¼ 15.3) and 798 time intervals after 12.30.93M¼ 6.1 (K¼ 15.0) events

were analyzed. It is important to note that each of these relatively short time series

is localized in the corresponding time periods named “before”, “during” and “after”

experiments.

It becomes clear from the results of IFS-clumpiness and RQA analysis

(Fig. 20.7) that qualitatively this situation is like that shown in Fig. 20.2, i.e.,

after the beginning of experiments the dynamics becomes more regular and after

accomplishing of experiments the dynamics is most random-like.

Quantitatively, it is shown in Fig. 20.8 that these short time series generally reveal

that after the experiments the dynamics has also become more random than before.

Some differences are noticeable in saturation values of correlation dimension (in

Fig. 20.8) before (circles, d2 ¼ 3.1 � 0.4) and during (squares, d2 ¼ 2.1 � 0.7)

experiments. The latter may be caused by the fact that the data length was too limited

for proper nonlinear analysis of these time series (untypical shape of the curve at high

embedding dimensions) as well as by artificially increased fraction of aftershocks in

short time series, which contains only the events after the largest earthquake.

In any case, our main conclusion about low-dimensional dynamical structure of

earthquake temporal distribution during experiments and increasing randomness

after termination remains valid even for periods of separate large earthquakes.

The above conclusion about the increase of regularity in earthquakes temporal

distribution after beginning of experiments is to some degree also confirmed by

results of Lempel and Ziv’s algorithmic complexity (CLZ) measure calculation

[Lempel and Ziv, 1976]. Indeed, CLZ is larger when the necessary code words are

longer, i.e., when regular patterns of analyzed time series are minor.

Indeed, measured values of Lempel-Ziv’s complexity before, during, and after

experiments for original time series above the threshold areCLZ ¼ 0.99� 0.07;CLZ ¼
0.87� 0.05; CLZ ¼ 1.00� 0.08, respectively.
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IFS Clumpiness Test

IFS Clumpiness Test

ITBE.DAT

ITAE.DAT

IFS Clumpiness Test ITLAE.DAT

a b

c d

e f

Fig. 20.7 Qualitative analysis of 1000 data waiting times sequences (complete catalogue),

after largest events before the beginning of EM experiments (1975-1983), during experiments

(1983-1988) and after accomplishing of experiments (1988-1992). IFS-clumpiness test for

inter-event time interval sequences: (a) before experiments, (c) during experiments, (e) after

experiments. Recurrence plots analysis of waiting times sequences: (b) before experiments, (d)

during experiments, (f) after experiments
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The same conclusion follows also from quantitative RQA results; namely

RRðtÞ ¼ 9.6, DETðtÞ ¼ 3.9 before the experiments, RRðtÞ ¼ 25, DETðtÞ ¼ 18

during, and RRðtÞ ¼ 3, DETðtÞ ¼ 1.5 after the experiments.

The increasing order in earthquake temporal distribution under the influence of EM

is confirmed for short time interval sequences above the threshold after the largest

earthquakes. Indeed, Lempel-Ziv’s complexity measure values were: CLZ ¼ 0.98

� 0.08; CLZ ¼ 0.74 � 0.05; CLZ ¼ 1.00 � 0.09 before, during, and after MHD runs,

respectively (note that CLZ ¼ 0.04 for periodic and CLZ ¼ 1 for random processes).

Also, the increasing order in temporal distribution is documented by RQA results for

the above-mentioned short time series; namely RRðtÞ ¼ 9.8, DETðtÞ ¼ 6.5 before the

experiments, RRðtÞ ¼ 19.5, DETðtÞ ¼ 49.3 during, and RRðtÞ ¼ 7.1, DETðtÞ ¼ 1.6

after the experiments.

In other words, for the situation where the shape of d2 (Fig. 20.8) is not

informative for finding changes in dynamics, possibly due to too short time series,

Lempel- Ziv and RQA analysis reveals the increase of regularity. The conclusion

from Tsallis entropy calculation is the same. As it is shown in Fig. 20.10, normal-

ized to the averaged S value calculated for randomized data sets, the entropy

decreases for time series 2, i.e., the extent of regularity in the earthquake temporal

distribution increased during MHD runs.

On the basis of results of previous research it is known that small earthquakes

play a very important role in general dynamics of earthquake temporal distribution

[Matcharashvili et al., 2000]. Therefore, we have additionally carried out an

analysis of time series containing all the waiting time sequences available from

the whole catalogue, including those between small earthquakes below the magni-

tude threshold. This test is also valid for checking the robustness of results in case of

adding a new, not necessarily complete set of data to our original set. The total

number of events in the whole catalogue increased up to 14100, while in the

complete catalogue for the three above-mentioned periods (before, during and

after MHD experiments) there were about 4000 data in each one.
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The results of IFS and recurrence plots tests of these time series are shown in

Fig. 20.9. Noticeable qualitative differences in waiting time distribution dynamics

during, as well as after accomplishment of experiments is obvious.

The results of correlation dimension calculation for these time series are presented

in Fig. 20.11. Practically, there are no differences from results obtained for the case

withm > 2.0 (Fig. 20.3). Namely, according to Fig. 20.11, integral time series (14100

time intervals) for the whole period of observation (1975–1996) reveals a clear

low correlation dimension (d2 ¼ 2.40 � 0.71) (diamonds). Time series before

the beginning of experiment (squares) is characterized by correlation dimension

d2 ¼ 3.50 � 0.63 which still is below the accepted low dimensional threshold

(d2 ¼ 5.0). During experiments (Fig. 20.11, triangles), the correlation dimension of

time interval sequence decreases noticeably (d2 ¼ 1.71 � 0.09) as compared to the

situation before. After termination of experiments, the correlation dimension of wait-

ing time interval sequences increases noticably (d2> 5.0), exceeding low dimensional

threshold (d2 ¼ 5.0). As in the case of complete catalogue, this means that after

termination of experiments the extent of determinism in process of earthquake

temporal distribution decreases. The considered process becomesmuchmore random,

both qualitatively (Fig. 20.9. c, f), and quantitatively (Fig. 20.11 circles).

Both the complete and whole catalogues of waiting time sequences reveal low-

dimensional nonlinear structure in temporal distribution of earthquakes before and

especially during experiments, which was confirmed by 70 surrogate testing ana-

lyses (Fig. 20.12). The significance criterion S for analyzed time series before the

experiments gives: 32.3 � 0.2 for RP and 5.3 � 0.6 for GSRP surrogates; conse-

quently, after the beginning of experiments the null hypothesis that the original time

series is a linearly correlated noise was rejected with significant value of S criterion:
46.2 � 0.5 for RP and 6.5 � 0.7 for GSRP surrogates.

The correlation dimension vs. embedding space dimension of noise-reduced

time series of the whole catalogue is presented in Fig. 20.13. It is clear from this

picture that calculated values of correlation dimension are not affected by noises as

for the complete catalogue. The results show that the differences found in the d2-
phase space dimension (P) relationship before and during experiments in both

catalogues are indeed caused by dynamical changes in temporal distribution of

earthquakes during EM experiments.

We also analyzed waiting time sequences after each largest (M 	 6.1–6.3) event

for the whole catalogue, namely, 1000 consecutive waiting time sequences after

03.24.78 M ¼ 6.1 (K ¼ 15.0), 01.24.87 M ¼ 6.3 (K ¼ 15.3) and 12.30.93 M ¼ 6.1

(K¼ 15.0) events. As it is shown in Fig. 20.14, these short time series generally reveal

dynamical characteristics similar to those of the time series obtained from the com-

plete catalogue. The differences which are noticeable in saturation values of correla-

tion dimension before (circles, d2¼ 2.0� 1.1 in Fig. 20.14) and during (squares, d2¼
3.2� 0.8, Fig. 20.14) experiments may be caused both by the shortness of these time

series or by the influence of increased fraction of aftershocks.

Thus, conclusions concerning the influence of hot and cold EM runs on general

characteristics of the dynamics of earthquakes’ temporal distribution remain valid

for small earthquakes too.
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Fig. 20.9 Qualitative analysis of temporal distribution of earthquakes including small events

(whole catalogue, all events) before the beginning of EM experiments (1975-1983), during

experiments (1983-1988) and after accomplishing of experiments (1988-1992). IFS-clumpiness

test for waiting times sequences: (a) before experiments, (c) during experiments, (e) after experi-

ments. Recurrence plots analysis of inter-event time interval sequences: (b) before experiments,

(d) during experiments, (f) after experiments
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Fig. 20.10 The Tsallis entropies calculated for 3 windows (1–before, 2–during and 3–after MHD

runs) for various entropic indexes q
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It is interesting to note that on the laboratory scale the effect of triggering and

synchronization of acoustic emission during a slip imposed by strong EM field is

well documented in numerous experiments [Chelidze et al, 2002; Chelidze and

Lursmanashvili 2003; Chelidze et al, 2005].
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20.5 Conclusion

The question whether electromagnetic experiments on a specific site can influence

the dynamics of a seismic region is complex. A complete answer to it, if any could

be given, would involve a repeated set of analyses for different seismic regions over

a long period of time with and without EM experiments. A theoretical explanation

showing the cause-and-effect relationships between the two phenomena is also

fundamental. This paper has addressed the question under statistical aspect involv-

ing nonlinear dynamics methods. These methods have been chosen because there

are not trivial, simple and direct relations between the two phenomena: this means

that relations are of complicated nature. Moreover, seismicity is very probably a

critical process with a per se complicate evolution: under given conditions, possible

relations must not be direct and simple. With nonlinear methods, the time evolution

of seismicity has been investigated looking at relations with EM experiments.

Waiting times constitute the aspect analyzed. The whole time period has been

divided into three parts, the middle being the one when EM experiments took place.
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The phase space attractor, reconstructed with delay time technique, shows low

correlation dimension values for the whole time period; this indicates, at least, the

presence of few seismicity-driving processes. The same analysis on the three sub-

catalogues confirms the result, with the exception for the period after the EM experi-

ments: strong EMdischarges lead to the increase of extent of regularity in earthquakes

temporal distribution, while after the EM influence ceases, the earthquakes’ temporal

distribution becomes much more random than before the experiments. This is the

main result of the analysis and it has been confirmed by changing the conditions of the

analysis itself. Non-linear noise reduced time series has confirmed such results, as also

surrogate testing did. The middle period contains a large seismic event (January 24,

1987 M ¼ 6.3 derived from energy class K ¼ 15.3); this event has certainly a well-

identified aftershocks activity and this can be a strong factor influencing the time

dynamics. The root question is: is this event with its related sequence responsible of

the change of the dynamics of analyzed data? If the answerwould be yes we are forced

to answer immediately the new question: is this earthquake related to the EM

experiments? But it must be noted that inside the other two periods there are also

important events of comparable magnitudes and the analysis has been conducted on

the three sequences of catalogue after each strong event separately. General confir-

mation of results has been shown. Same results have been revealed with the use of the

whole catalogue, regardless of the completeness criteria.

This analysis is certainly not exhaustive: the seismic catalogue covers a broad

area and all complete data were used, with no distinction for space location of

seismic events. The energy aspect has not been fully considered: all events were

considered equal, regardless of their magnitude. These are strong simplifications

and the results must be considered under these constrains. However, the results

appear to be consistent: EM experiments influence seismic time dynamics to some

extent, increasing the regularity of waiting times. After the EM experiments,

seismic waiting times have increased their random character to a level higher

than before experiments.
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