
Chapter 1

Nonlinear Dynamics as a Tool for Revealing

Synchronization and Ordering in Geophysical

Time Series: Application to Caucasus Seismicity

Teimuraz Matcharashvili and Tamaz Chelidze

1.1 Introduction

It is a common statement in scientific literature that the complexity of nature has

always been an inevitable problem in our efforts towards understanding spatial

forms of natural objects and temporal evolution of natural processes. “Complex”

and “complexity” are now quite popular scientific terms, though there is little

consensus on their official definitions and they still have a variety of meanings

depending on the context [Arecci, 1996; Shiner, 1999]. This is so because the study

of complexity in both dynamical and structural sense is in its infancy, being at the

same time a rapidly developing field in the forefront of many areas of science,

including mathematics, physics, geophysics, economics, biology, etc.

Natural systems and/or processes are complex mainly due to their nonlinearity,

an intrinsic property of the underlying laws conditioning the absence of deter-

minism of the Universe. The presence of this property is revealed in the specificity

of systems whose temporal behavior and spatial structures were named “complex”

[Kantz, 1997; Matcharashvili, 2000]. In order to avoid misunderstanding caused by

the tradition associating the term nonlinearity exclusively with dynamics, it should

be stressed that at present the terms nonlinearity and complexity are commonly

regarded as synonyms. This is convenient in order to address both complex

nonlinear temporal evolution and complex non-Euclidean spatial forms of natural

systems. As an inherent property, nonlinearity or complexity is revealed in the

absence of deterministic cause-effect relation observed on different spatial and

temporal scales. This property incorporates phenomena with a very broad diversity
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of dynamical features. Generally speaking, this diversity manifests itself in a certain

kind of hierarchy of dynamical behavior, ranging from strict determinism to total

randomness. The most important is the fact that between these extremes there

are many intermediate states that reveal different degree of orderliness, such as,

e.g., periodicity, quasiperiodicity, deterministic chaos, low and high dimensional

dynamics, hyperchaos, etc. [Theiler, 1997; Kantz, 1997].

Until recently, neither a qualitative detection nor a quantitative evaluation

of these intermediate states has been possible because of the absence of a

corresponding mathematical formalism and appropriate data analysis methods. At

present, the time series nonlinear analysis universal technique has been elaborated

[Packard et al, 1980; Berge et al, 1984; Eckmann et al, 1987; Abarbanel et al, 1993;

Rapp et al, 1993; Kantz, Shreiber 1997], which often (but not always) enables us to

achieve correct qualitative and quantitative assessment of complex processes by

their dynamical characteristics.

It is necessary to mention that traditional linear methods are mostly not suitable

for complex processes of interest. This is why in different fields of science and

practice there has been an explosion of papers searching for methods aiming at

detection of peculiarities of complex systems evolution in order to achieve reliable

identification of processes by their dynamics. As the complex systems are charac-

terized by different transitions between regular, laminar, and chaotic behaviors, the

knowledge of these transitions is necessary for understanding the process. In this

respect, one of the fundamental problems is how to measure the complexity of both

local and global dynamical behaviors from the observed time series.

There are several main approaches to quantify the complexity of processes

by analyzing the measured time series [Boffetta, 2001]. Some of them have

roots in dynamical systems and fractal theory and include Lyapunov exponents,

Kolmogorov-Sinai entropy, and fractal dimensions [Eckmann et al. 1987]. These

methods are based on reconstruction and testing of phase space objects equivalent to

the unknown dynamics. The other methods stem from the information theory includ-

ing Shannon entropy [Shannon, 1948], algorithmic complexity [Shiner, 1999; Yao,

2004] etc., and are mostly based on symbolic dynamics.

For different complex systems, various approaches to complexity measurements

can be used. The common problem of many methods is the requirement of long,

high quality stationary data sets, which is not always easy to fulfill in analyses of

real natural or laboratory systems. To overcome these difficulties, new tests have

been proposed, such as recurrence plots (RP) and recurrence quantitative analysis

(RQA). These methods equip us for gaining new understanding on the complex

natural dynamics.

1.2 Overview of nonlinear data analysis methods

Most nonlinear data analysis methods are based on reconstruction and inspection of

the state or phase space of the investigated process. When the system of interest is

nonrandom, it has a property known as recurrence [Ruelle, 1994]. This means that
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after some transients, the system comes back close to the same points in phase space

again and again. The character of time evolution of trajectory forms a phase space

structure or attractor of the system. The shape of attractor provides essential

information on dynamical features of the investigated process. Generally, a point

in a phase space is associated with a single state of the system which is fully defined

by a set of m dynamical variables. It is clear that to have a complete description of

the state of the dynamic system, these m physical quantities should all be measured,

at least in principle. Unfortunately, in most of experimental situations, not all (and

often only a single) physical quantities of state variable can be measured; all what

we have is an one-dimensional time series and from this series we have to learn as

much as possible about the system that generated the signal. According to Takens’

theorem it is possible to catch the essential dynamical properties of a system by a

reconstruction of its phase space by only one variable. Two- and three-dimensional

phase portraits encapsulating essential dynamical properties of the analyzed com-

plex process are used as qualitative tests of the process dynamics. They enable to

accomplish first qualitative visual inspection of unknown dynamics and uncover

general properties of the analyzed process. Qualitative analysis allows us to reveal

possible existence of specific attractors, e.g., strange ones which point to the

deterministic chaotic behavior.

Further, the phase space can be analyzed using quantitative methods.

For both qualitative and quantitative approaches, the phase space should be

reconstructed from measured (or simulated) data sets. Generally, the measurements

commonly result in discrete time series giðtÞ, where t ¼ iDt, and Dt is the sampling

rate. As a rule, the sampling rate is constant, forming equidistant time series but this

is not always the case. The time series taken at time intervals of different length, the

so-called unevenly sampled time series, are also quite common [Schreiber, 1999].

As far as system variables are coupled, a single component contains essential

information about the dynamics of the whole system [Rapp et al., 1993; Castro,

1997; Kantz, 1997]. Therefore, the trajectory reconstructed from this scalar time

series is expected to have the same properties as the trajectory embedded in the

original phase space, formed by all m state variables. Packard et al. (1980) and

Takens (1981) independently proposed the idea of using single sequence of mea-

surements to transform process dynamics into the phase space structure to gain

information on the unknown underlying dynamics from this structure. According to

the embedding theorem, there exists a one-to-one image of attractor in the embed-

ding space, if the embedding dimension is sufficiently high [Hegger, 1999]. The

idea was successfully realized after Takens proved that it is possible to reconstruct

from a single scalar time series a new attractor which is diffeomorphically equiva-

lent to the attractor in the original state space of the system under study. Essentially

two methods of reconstructions are available: delay coordinates and derivative

coordinates. Derivative coordinates were originally proposed by Packard et al.

(1980) and consist of using the higher order derivatives of the measured time series

as the independent coordinates. Since derivatives are more susceptible to noise,

this is usually not very practical for real data which are very noisy themselves.

Therefore, the method of delay coordinates was recognized as a more practical tool.

Delaying data by T helps to exclude distortions of analysed dynamics caused by
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temporal closeness of observations. The T value should be large enough to avoid

insubstantial functional dependence between data and not so large to make

them completely independent statistically. If these conditions are fulfilled, a set

of d-dimensional vectors in d-dimensional space can be reconstructed:

�XðiÞ ¼ ½xðiÞ; xðiþ TÞ; xðiþ 2TÞ;::::; xðnþ ðd � 1ÞTÞ�: (1.1)

According to Takens’ theorem, the reconstructed dynamics is equivalent to

the dynamics of the real underlying system [Packard, 1980; Takens, 1981]. Equiva-

lence of two dynamics means that their dynamical invariants (e.g., generalized

dimensions, the Lyapunov spectrum, recurrence characteristics, etc., to be shortly

described below) are identical. The delay time, T, for the reconstructions can be

calculated from the autocorrelation function or mutual information (MI) first

minimum. The averaged mutual information evaluates the amount of bits of

information shared between two data sets over a range of time delays is defined

as [Abarbanel,1993; Kantz, 1997; Cover, 1991; Kraskov, 2004]:

IðX; YÞ ¼
XN

ij

pði; jÞ log2
pði; jÞ

pxðiÞpyð jÞ ; (1.2)

where pxðiÞ and pyð jÞ are the probabilities of finding xðiÞ and xðiþ TÞmeasurements

in time series, respectively, pði; jÞ is a joint probability of finding measurements xðiÞ
and xðiþ TÞ in time series, and T is the time lag. It is important to mention that in

contrast to the linear correlation coefficient (which also can be used for delay time

calculation), MI is sensitive also to dependences which are not linear, i.e., do not

manifest themselves in the covariance. MI is zero if and only if the two random

variables are strictly independent. The MI calculation is also important as a tool to

provide information on phase space points probability distribution.

In order to define the correct value of embedding dimension de � 2da þ 1

(where de is the dimension of embedding space and da is attractor’s dimension)

one may use the so-called false nearest neighbor method [Kennel, 1992; Hegger,

1999]. The percentage of false nearest neighbors (phase points projected into

neighborhoods of points to which they would not belong in higher dimensions)

approaches zero as the dimension of the phase space increases.

Since phase space structure attractor or image of dynamics is formed, the twomost

popular ways for the quantitative evaluation of complexity of analyzed dynamics are:

quantification of the average evolution patterns of neighboring trajectories in the state

space, and/or quantification of the geometric patterns of the state space object.

Evolution of phase space trajectories could be analyzed by calculation of spectrum

of Lyapunov exponents or, as it is often done, by calculation of maximal Lyapunov

exponent lmax. Generally, Lyapunov exponents quantify the average exponential

rate of divergence of neighbouring trajectories in the state space, and thus provide

a measure of the system’s response to local perturbations [Rosenstein, 1993; Kantz,

1997]. For measured data sets, the maximum Lyapunov exponent lmax for a
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dynamical system can be determined from the equation: dðtÞ ¼ d0e
lmaxt, where d(t) is

the mean divergence between neighboring trajectories in the state space at time t and
d0 is the initial separation between neighboring points. There are several methods

[Wolf, 1985; Sato, 1987; Rosenstein, 1993] for estimating lmax which often suffer

from drawbacks that are serious for practical use, namely, the estimates of lmax are

unreliable for small data sets and need essential computational resources. Generally,

if l<0, phase trajectories are drawing together and the considered dynamical system

has an attractor in the form of a fixed point. When l¼0, the system tends to a stable

limit cycle. l>0 means that phase trajectories are moving away and such a system

may be chaotic or random (Rosenstein, 1993).

In order to characterize the unknown dynamics by the geometry of their recon-

structed phase structures, an algorithm for calculation of fractal dimensions of

phase space point sets should be used. It is known that the fractal dimension of

an attractor roughly characterizes the complexity and gives a lower bound for the

number of equations or variables needed for modeling the underlying dynamical

process. There are several such measures based on quantification of self-similar

properties of phase space objects. These measures are: the information dimension

(di), the Hausdorf dimension dH, etc. [Abarbanel, 1993; Kantz, 1997]. We shortly

describe here only the GPA method of computing correlation dimension or fractal

dimension as proposed by Grassberger and Procaccia [1983]. In spite of difficulties

in using it for real data sets, GPA remains to be the most popular and often

used method for quantifying geometrical features of phase space objects. This is

probably due to the simplicity of the algorithm [Bhattacharya, 1999] and the fact

that the same intermediate calculations are used to estimate both dimension and

entropy. The correlation sum, C(r, N), quantifies the way in which the density of

points in the state space scales with the size of the volume containing those points.

This approach is based on the idea of correlation sum. Correlation sum CðrÞ of set
of points in the vector space is defined as the fraction of all possible pairs of points

which are closer than a given distance r. The basic formula useful for practical

application is

Cðr;NÞ ¼ 2

ðN � wÞðN � wþ 1Þ
XN

i¼1

XN

j¼iþw

Yðr � xi � xj
�� ��Þ; (1.3)

where YðxÞ is the Heaviside step function, YðxÞ¼0 if x � 0 and YðxÞ¼1 if x � 0.

xi � xj
�� �� is the Euclidian norm. Points with i ¼ j are excluded. w is the Theiler’s

window for fractal systems for time series that are long enough. For small r,
CðrÞ / rn relationship is correct. Commonly, such a dependence is correct only

for the restricted range of r values, the so-called scaling region. Correlation

dimension n or d2 is defined as

n ¼ d2 ¼ lim
r!0

logCðrÞ
logðrÞ : (1.4)
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In practice, the d2 value is found from the slopes of logCðr;NÞ versus log r
curves for different phase space dimensions. In order to achieve appropriate linearity

of the relationship between log[C(r, N)] and log r, one has to determine local slopes,

or the so-called ‘‘local scaling exponents’’[Kantz, 1997]. The true correlation

dimension of an unknown process is the saturation value of d2, which does not

change by increasing phase space dimension. If saturation does not take place, the

correlation dimension is infinitely large which is typical for random processes.

For a correct analysis it is necessary to have data sequences that are long enough,

at least N � 10d=2, where N is a length of time series and d is the dimension of

attractor [Abarbanel, 1993]. The three dimensions mentioned above are related by

d2< di< dH, with equality when the points in the state space are distributed

uniformly over the attractor. In spite of popularity of d2 calculation method,

findings by GPA must be interpreted with great care as it is well known that linear

stochastic processes can also mimic low-dimensional dynamics [Theiler et al. 1992;

Rapp et al., 1993]. In other words, the saturation of a correlation dimension and the

existence of positive Lyapunov exponents cannot always be considered as a

proof of deterministic chaos, predictable in sense of patterns, which is closest to

quasi-periodic dynamical regime [Rapp et al. 1993; Kantz and Shreiber, 1997].

Since linear correlations lead to many spurious conclusions in nonlinear time series

analyses, it is important that the obtained results be verified using the so-called

surrogate data approach. This is a method to test the null hypothesis that the

analyzed time series are generated by a specific process with the known linear

properties [Theiler et al., 1992]. It should be stressed again that the above

phase space measures have strict restrictions in the sense of time series length

and are mostly relevant for low dimensional or deterministically chaotic systems.

When the dynamics of the investigated process is more complex or when

dimension of underlying attractor is moderately large, say d2>5, all the results of

dimensional analysis on finite amount of real data series are not grounded well

enough [Schreiber, 1999]. Moreover the real data series are often very noisy,

containing measurement noise as well as dynamical noise (noise interacting with

dynamics), and then the conventional estimates fail as well. Therefore, when we

deal with complex dynamics, a less ambitious and more realistic goal commonly

applied is to search for the inherent nonlinearity of the processes, or to rank them by

the extent of nonlinearity. The practical importance of this statement becomes clear

in the light of known facts that in most cases the dynamical behavior of natural

scale-invariant processes is non random, revealing nonlinear structure, while valid

evidences of deterministic chaotic type of dynamics are very seldom [Theiler,

1997; Marzocchi et al., 1997; Goltz, 1997].

The above-mentioned method of surrogate data equips us for testing the non-

linear structure of complex dynamics (Theiler, 1992). The surrogate data is inher-

ently a stochastic signal which mimics certain statistical properties, such as

temporal autocorrelation or Fourier power spectra of the original signal. The

surrogates can be constructed from the original time series on the basis of different

null hypotheses. The three types of most often used surrogates address the three

main hypotheses: temporally independent noise, linearly filtered noise, and
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nonlinear transformation of linear filtered noise. So whenever we try to quantify the

degree of nonlinearity, the results of calculation of the above measures should be

compared with the similar quantities for surrogate data sets. Phase randomized

surrogate sets (obtained by destroying the nonlinear structure through randomiza-

tion of the phases of a Fourier transform of the original time series and following

invert transformation) are often used to test the null hypothesis that the time series

are linearly correlated with Gaussian noise [Theiler et al., 1992]. Also a Gaussian

scaled random phase (GSRP) surrogate set can be generated to address the null

hypothesis that the original time series is a linearly correlated noise that has

been transformed by a static, monotone nonlinearity [Rapp et al., 1993, 1994]. The

GSRP surrogates are generated in a three-step procedure. At first, a Gaussian set of

random numbers is generated, which has the same rank structure as the original time

series. After this, the phase randomized surrogates of these Gaussian sets are con-

structed. Finally, the rank structure of original time series must be reordered accord-

ing to the rank structure of the phase randomized Gaussian set [Theiler, 1992].

Generally, these two methods of generation of surrogates are based on shuffling

of the original data set but, in the case of Gaussian scaled random phase surrogates,

the controlled shuffles [Rapp et al., 1994] can give more precise and reliable results

than the unstructured shuffles of the random phase surrogates.

Commonly, for testing the null hypothesis, d2 is used as the discriminating

metric. There are several ways to measure the difference between the discriminat-

ing metric measure of the original (given by Morig) and the surrogate (given by

Msurr) time series.

The most commonly used measure of the significance of the difference

between the original time series and the surrogate data is given by the criterion:

S ¼ jhMsurri-Morigj/ssurr, where ssurr denotes standard deviation of Msurr. The

details of the procedure, as well as an analytic expression for DS, the uncertainty

in S, are described in Theiler et al. [1992].

Alternatively, the Monte Carlo probability can be used, defined as:

PM ¼ (number of cases M � Morig)/(number of cases)

where PM is an empirical measure of the probability that a value ofMsurrwill be less

than Morig. It is particularly appropriate when the number of surrogates is small, or

when the distribution of values of M obtained with surrogates is non-Gaussian

(Rapp et al. 1994).

For rejecting the null hypothesis, the Barnard and Hope nonparametric test can

be used (Rapp et al. 1994). With this criterion, the null hypothesis is rejected at a

confidence level pc¼1/(Nsurrþ1), if Morig<Msurr for all the surrogates.

One of the serious problems in real data analyses is the influence of noises. It is

preferable to use the so-called nonlinear noise reduction (which in fact is phase

space nonlinear filtering) instead of common linear filtering procedures. The latter,

as it is well known, may destroy the original nonlinear structure of analyzed

complex processes [Hegger and Kantz 1999; Schreiber, 2000]. Nonlinear noise

reduction relies on the exploration of reconstructed phase space of the considered
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dynamical process instead of frequency information of linear filters [Hegger and

Kantz, 1999; Schreiber, 1993; Kantz and Schreiber, 1997].

As it was many times pointed out above, most methods of analysis need rather

long and stationary data sets, which is commonly not typical of the measured time

series. This was a strong impetus for a further development of new techniques to get

an insight into the complex processes, having not very long and rather noisy

observable time series. For this purpose, several measures of complexity, mostly

based on a symbolic dynamics approach, have been proposed, such as Renyi

entropies, the effective measure complexity, the e and Lempel-Ziv complexity

(LZC) measure, etc. [Lempel, 1976; Wackerbauer, 1994; Rapp, 2001]. The LZC

is especially suitable for relatively short real data sets because is not so demanding

as to the time series length as other methods [Zhang, 1999; Matcharashvili, 2001].

It is necessary to mention the approach based on the study of attractor’s organi-

zation, or testing of topology of phase space images of unknown dynamics. This

technique, oriented on exploration of phase space structure or image of dynamics, is

the method of recurrence plots (RP) [Eckmann et al., 1987]. Let us recall here that if

the dynamical system has any deterministic structure, an attractor appears in the

state space. As it was already mentioned, the attractor is a set of points in phase

space, towards which a dynamical path will converge. Again, the recurrence is a

fundamental property of nonrandom dynamical systems, the state of which,

although exponentially diverges under small disturbances, but after some time the

system will come back to a state that is arbitrarily close to a former state. Recur-

rence plots visualize such a recurrent behavior of dynamical system. Real processes

are usually characterized by complex dynamics to be embedded in high-dimen-

sional phase spaces. RP enables to investigate structure in these high-dimensional

phase spaces through a two-dimensional representation of its recurrences. It is most

important to say that the recurrence plot method is effective for nonstationary and

rather short time series [Gilmore, 1993, 1998].

Generally speaking, the recurrence plots are designed to locate hidden recurring

patterns and structure in time series and are defined as N � N symmetric matrix:

Ri; j ¼ Yðei � �xi � �xj
�� ��Þ; i; j ¼ 1; :::;N; (1.5)

where~xi; j are phase space vectors reconstructed using Takens’ time delay method.

Insofar, as the RP is based on Takens’ delay-coordinate embedding, when this

procedure is correctly carried out, the dynamical invariants of the true and recon-

structed dynamics are identical. Therefore, it is natural to assume that the RP of

a correctly reconstructed trajectory bears similarity to RP of the true dynamics.

In fact,~xi stands for the point in phase space at which the system is situated at time i,
ei is a predefined cut-off distance, YðxÞ is the Heaviside function. The cut-off

distance defines a sphere centered at ~xi. As far as recurrence of the phase space

trajectory to a certain state is a fundamental property of deterministic dynamical

system [Argyris, 1994; Ott, 1993; Marwan, 2002], the trajectory in the recon-

structed phase space returns at time i into the e-neighborhood of where it was at
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time j (i.e. if~xi is closer to~xj than the cut-off distance) Ri;j ¼ 1 and these two vectors

are considered to be recurrent. Otherwise Ri;j ¼ 0. According to Eckman et al.

[1987], the Ri;j values can be visualized by black and white dots, but often the

recurrence plot relates Ri;j distances to a color, e.g., the longer the distance, the

“cooler” the color. Thus, the recurrence plot is a solid rectangular plot consisting of

pixels whose colors correspond to the magnitude of data values in a two-dimen-

sional array and whose coordinates correspond to the locations of the data values in

the array.

The black points indicate the recurrences of the investigated dynamical system

revealing their hidden regular and clustering properties. By definition, RP is

symmetric and has black main diagonal (the line of identity) formed by distances

in matrix. In order to understand RP it should be stressed that it visualizes the

distance matrix which represents autocorrelation in the series at all possible time

(distance) scales. As far as distances are computed for all possible pairs, on the RP

plots the elements near the diagonal correspond to short range correlation, whereas

the long range correlations are revealed by the points distant from the diagonal.

Hence if the analyzed dynamics (time series) is deterministic (ordered, regular),

then the recurrence plot shows short line segments parallel to the main upward

diagonal. At the same time, if dynamics is purely random, the RP will not present

any structure at all. One of the crucial points in RP analysis is the selection

of cutoff distance e or radius. If e is selected too low no recurrent point will be

found. At the same time, it cannot be set too high as then every point will be

assumed as recurrent. Exhaustive overview on this subject can be found in Zbilut

[1998], Marwan [2003].

The primordial aim of RP testing was the visual inspection of structures located

in high dimensional phase spaces where the above-mentioned methods are useless,

especially when we deal with real data sets. The view of recurrence plots provides a

unique possibility to observe time evolution patterns of phase space trajectories,

both at large and short scales. According to Eckmann et al. [1987], by analysing the

large scale patterns or typology, recurrence plots can be characterized as homoge-

neous (dynamics with uniformly distributed characteristics), periodic (dynamics

with distinct periodic components), drift (dynamics with slowly varying para-

meters) and/or disrupted (dynamics characterized by abrupt changes). By small

scale inspection, patterns (or texture) of recurrence plots can be characterized as

single dots, diagonal lines, vertical lines and horizontal lines. The exact recurrent

dynamics causes long diagonal lines separated by a fixed distance. A large amount

of single isolated scattered dots and the vanishing amount of lines is typical for

heavily fluctuating dynamics under the influence of non correlated noises (by the

way, in this case insufficient dimension of embedding space is not excluded). The

non regular occurrence of short as well as long diagonal lines is characteristic

for low-dimensional chaotic processes, and the non regular occurrence of extended

uniform areas corresponds to irregular high-dimensional dynamics. In a more

general sense, the line structures in RP exhibit local time relationship between the

current phase space trajectory segments. The stationarity of the whole time series

requires that the density of line segments be uniform.
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As far as RP was developed for single data sets, Zbilut et al. [1998] have

expanded it by considering two different time series. The cross-recurrence between

two series, xi and yi, is defined as CRi;j ¼ Yðei � �xi � �xj
�� ��Þ. Here, the two time

series are embedded in the same phase space. The representation is analogous to

RP, and it is called a cross-recurrence plot (CRP) [Marwan, 2003].

Qualitative patterns of unknown dynamics presented as fine structure of RP or CRP

are often too difficult to be considered in detail. Zbilut andWebber [Zbilut, 1992] have

developed a tool which quantifies the structures in RPs, namely, the Recurrence

Quantitative Analysis (RQA). They define measures using the recurrence point

density, the length of diagonal, and vertical structures in the recurrence plot, the

recurrence rate, the entropy of recurrent points’ distribution, etc. Presently at least

8 different statistical RQA values are known [Zbilut, 1992; Ivanski, 1998; Marwan,

2003], practical meaning of which is not always quite clear. Computation of these

measures in small windows moving along the main diagonal of the RP reveal the time

dependent behavior of these variables making it possible to identify the unknown

dynamical patterns in time series [Zbilut, 1992; Marwan, 2002].

Here we will briefly touch only main RQA statistical values. The first of these

statistics, termed % recurrence (%REC), is simply the percentage of points on the

RP that are darkened or in other words those pairs of points whose spacing is

below the predefined cut-off distance ei. It quantifies the number of time instants

characterized by a recurrence in the signals’ interaction: the more periodic the

signal dynamics, the higherthe (%REC) value. Stochastic behavior causes very

short diagonals, whereas deterministic behavior causes longer diagonals.

The second RQA statistic is called % determinism (%DET); it measures

the percentage of recurrent points in a RP that are contained in lines parallel to

the main diagonal. The main diagonal itself is excluded from these calculations

because points there are trivially recurrent. Intuitively, %DET measures how

‘‘organized’’ the RP is. This variable discriminates between the isolated recurrent

points and those forming diagonals. Since a diagonal represents points close to each

other, successively forward in time, DET also contains the information about the

duration of a stable interaction: the longer the interactions, the higher the DET

value. Stochastic and heavily fluctuating data cause none or only short diagonals,

whereas deterministic systems cause longer diagonals.

The third often used RQA statistics, called entropy (ENT), is closely related to

%DET. ENT is Shannon information entropy of line distribution measured in bits

and is calculated by binning the diagonal lines according to their lengths and using

the following formula:

ENT ¼ �PN
k¼1 Pk log2 Pk

where N is the number of bins and Pk is the percentage of all lines that fall into bin k.
In other words, Pk is defined as the ratio between the number of k-point long
diagonals, and the total number of diagonals. ENT is measured in bits of informa-

tion, because of the base-2 logarithm. Thus, whereas DET accounts for the number

of the diagonals, ENT quantifies the distribution of the diagonal line lengths.
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The more different the lengths of the diagonals, the more complex the deterministic

structure of the RP. A more complex dynamics will require a larger number of bits

(ENT) to be represented.

The fourth RQA statistics, termed TREND, measures how quickly a RP goes

away from the main diagonal. As the name suggests, TREND is intended to detect

nonstationarity in the data. The fifth RQA statistics is called length of the maximal

deterministic line (MAXLINE) and is equal to the reciprocal of the longest line

length found in the computation of DET, or 1/linemax. Eckmann, Kamphorst, and

Ruelle claim that line lengths on RPs are directly related to the inverse of the largest

positive Lyapunov exponent [Eckmann et al., 1987]. Relatively small linemax

values are therefore indicative of chaotic behavior. In a purely periodic signal,

there is an opposite extreme, lines tend to be very long, so MAXLINE is very small.

The RQA technique gives a local view of the studied time series, based on the

single distance pairs in phase space and is suited for the detection of changes of

analyzed dynamics. This method is the most comfortable for qualitative discrimi-

nation between signals and random noise.

1.3 Investigation of dynamics of complex natural

process: Caucasus seismicity

The significant variability exhibited both in time and in space makes the problem of

identification and quantification of geophysical phenomena extremely complicated.

Therefore, the best way to understand dynamical features of complex geophysical

processes is to analyse the measured data sets using modern nonlinear methods.

Earthquakes are expression of the continuing evolution of the planet Earth and of

the deformation of its crust. Dynamics of seismic processes is viewed as extremely

complicated, so that the level of “turbulence” of the lithosphere exceeds that of the

atmosphere [Kagan, 1992, 1994, 1997].

During more than one hundred years of instrumental observations, several

important characteristics of spatial, temporal and energetic distributions of earth-

quakes have been revealed [Scholz, 1990; Keilis-Borok, 1990; Turcotte, 1992;

Goltz, 1997; Matcharashvili, 2000; Rundle, 2000]. Nevertheless, the question of

dynamics of seismic processes remains the subject of intense discussions because it

is directly tied with the problem of earthquake prediction. Opponents of earthquake

prediction [Kagan, 1992, 1994, 1997; Kanamori, 2001; Geller, 1999; Ben-Zion,

2008 etc.] regard seismic processes as completely random while proponents assume

them as complex and high-dimensional though not random [Main, 1997; Wyss,

1997; Chelidze, 1997; Knopoff, 1999]. Indeed, completely random processes are

unpredictable on any spatial and temporal scales. On the other hand, in processes

with nonrandom dynamical structure there always exist specific spatial and tempo-

ral scales for which the system is close to deterministic, i.e., it is predictable at least

for a not very far future. From this point of view, if seismic process has a

nonrandom structure it could not be regarded as unpredictable. Of course, it is
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clear that predictability in this sense does not necessarily mean “real” forecast of

every hazardous event in practically meaningful time scales. At present, evidence

of nonrandom structure of seismicity has mainly scientific importance because it

gives ground to efforts aimed at finding predictive markers. This is also important

for modern ideas on possible control of practically unpredictable seismic processes.

To bring some light into this problem, we consider dynamic structure of seismic

process in Caucasus.

As mentioned above, one of the most popular approaches to the problem of

identification of patterns of complex dynamics, including seismicity, is based on the

evaluation of nonlinear structures (or, just the same, of nonlinear structures of appro-

priate time series) [Theiler et al., 1992; Rapp et al., 1993]. In this way, it is possible to

achieve reliable detection of dynamical regime(s) of seismic process by calculating

their measurable characteristics. These characteristics can be calculated for a general

seismic process as well as prior to and after strong earthquakes. This is important in

search of possible earthquake predictive dynamical markers. It is known that from

both, qualitative and quantitative points of view, seismological data bases are as a rule

not sufficient for proper nonlinear evaluation of lithospheric dynamics, even for

relatively low-dimensional processes. Therefore, similar to other fields, evaluation

of nonlinear structure of geophysical data seems to be a more appropriate approach.

In order to answer the above question on the dynamical characteristics and

nonlinear structure of earthquake generation it is necessary to investigate dynami-

cal properties of seismic processes in all three domains: energetic, spatial and

temporal. For this purpose, “time series” of inter-event time intervals (waiting

times), magnitude sequences and inter-event distances, have been analyzed for

earthquakes in Caucasian region. Analyzed were also similar time series of smaller

regions of Greater Caucasus and Javakheti in1962–1993. All these time series were

taken from the earthquake catalogue for the Caucasus and the adjacent territories of

Northern Turkey and Northern Iran for the 1962–1993 time period (Seismological

Data Base of Institute of Geophysics, Tbilisi, Georgia).

It was shown that despite the fact that the size and temporal distributions

of earthquakes obey a power law, they are dynamically quite different. The

magnitude distribution of earthquakes in the Caucasian region is undoubtedly

high-dimensional, d2 as a rule is larger than 8 (d2 > 5 is assumed as a high

dimensionality threshold) [Sprott, 1997]. According to our results as well as reports

of other authors [Sadovsky, Pisarenko, 1991; Korvin, 1992] the fractal dimension

for the distribution of inter-earthquake distances is low (d2 < 2). Most interesting is

that the waiting times distribution reveals an obviously low dimensional nonlinear

structure (d2 of the order of 1.6–2.5 and lmax of the order of 0.2–0.7), although it

can not be recognized as a deterministic chaos [Matcharashvili, 2000] (see Fig. 1.1).

The low dimensionality of earthquakes temporal distribution is in complete agree-

ment with earlier results for other parts of the globe [Goltz, 1998].

The next main goal of investigation was a qualitative evaluation of earthquakes0

time and size distribution peculiarities, taking place before and after strongest

regional events as well as quantitative discrimination of dynamical characteristics

preceding and following largest regional earthquakes.
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So as a next step on the way to a better understanding of the underlying dynamics

of earthquake generation, we have undertaken comparison of the properties of

waiting time distribution before and after large events. For this purpose we have

considered waiting time sequences of a seismic catalogue, separately before and

after the largest events, using the above-mentioned tests such as correlation dimen-

sion, Lyapunov exponent calculation as a measure of non-linearity.

We investigated dynamical characteristics of seismic processes before and after

four earthquakes of the Caucasian region (Daghestan, Paravani, Spitak and Racha)

that were the strongest in the considered period.

According to the results of our analysis, the general properties of dynamics

of earthquakes temporal distribution before and after the largest regional events

do not indicate a qualitative difference from the integral dynamics obtained by

consideration of time series from the whole original catalogues [Matcharashvili,

2002, 2007]. Indeed, correlation dimensions of all the considered waiting time

sequences from the original catalogue (containing all independent events and

aftershocks above the threshold magnitude), both preceding and following the

largest events in the Caucasus, converge to a limit value. At the same time it is

important that these values are not coinciding. Consequently, as long as all the

investigated time series have correlation dimension lower than the low dimensional

threshold (d2 < 5) [see also Goltz, 1998], it can be deduced that the temporal

distribution of earthquakes is characterized by a low-dimensional dynamics before,

as well as after the largest regional events. At the same time, in the energetic

domain earthquakes’ magnitude distribution remains high-dimensional before and

after strong events. As it was stressed above, the results of dimensional calculations,

especially when a low-dimensional process is detected, should be verified using

special methods.

While testing low-dimensional interevent time sequences, we have typical

problems, always encountered in testing real, usually short and noisy time series.

As it was already mentioned, in order to overcome discriminating problems, as in

the case of high-dimensional processes, one has to test time series for the evidence

of nonlinearity [Theiler and Prichard, 1997]. One additional reason why this approach

becomes popular, is that from the practical point of view the goal of detecting

nonlinearity in low dimensional data is easier than a confident identification of

chaotic dynamics [Theiler, 1992].
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It was found that in all cases the time interval sequences obtained from the

original catalogue above the threshold magnitudes before and after the largest

events reveal evidence of a nonlinear structure. In other words, the null hypothesis

that these sequences are generated by linearly correlated noise or by static mono-

tone nonlinearity should be rejected. The significance of differences of S-measure

of natural sequences before and after the earthquakes considered from the appro-

priate phase randomized (SPR) and Gaussian scaled random phases (SGSRP) surro-

gates are significant at p < 0.005 confidence level; thus the significance of

differences for waiting time sequences before and after Dagestan (M ¼ 6.6)

earthquake are SPR ¼ 55.6 � 0.27, SGSRP ¼ 15.9 � 0.20 and SPR ¼ 50.5 � 0.15,

SGSRP¼ 17.1� 0.13; for Paravani (M¼ 5.6) earthquake SRP¼ 51.1� 0.21, SGSRP¼
16.2 � 0.13 and SPR ¼ 64.2 � 0.27, SGSRP ¼ 11.5 � 0.17; for Spitak (M ¼ 6.9)

earthquake SPR¼ 49.2� 0.12, SGSRP¼ 11.4� 0.12 and SPR¼ 52.2� 0.27, SGSRP¼
15.2� 0.19; for Racha (M¼ 6.9) earthquake SPR¼ 57.6� 0.23, SGSRP¼ 16.3� 0.23

and SPR ¼ 51.5� 0.17, SGSRP ¼ 18.4� 0.11.

Besides, for a nonlinear structure testing, the RQA method is suitable for short

seismic data sets. As shown in Figs. 1.2 and 1.3, the extent of the order in magnitude

distribution of Caucasian earthquakes before and after M6.9 Racha earthquake has

been noticeably changed. Strictly speaking, the energetic distribution becomes

more regular while the temporal distribution becomes essentially irregular. It is
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worth to mention that a decrease of the order in earthquake temporal distribution is

distinctive for both strong Racha earthquakes, M6.9 and its aftershock M6.2. At the

same time, an increase of the order in energetic distribution is not so clear.

To understand the above-mentioned differences in the correlation dimension

values before and after largest earthquakes, we used a sliding windows technique.

We considered a sequence of 6695 events of Paravani earthquakes inter-event time

intervals. Here No ¼ 5300 is the ordinal number of the time interval which directly

precedes the largest earthquake. We have calculated d2 for 1000 event sliding

windows with a step of 50 events starting with event No ¼ 3200 up to event No ¼
5800. Hence, the first window consists of time interval sequences between

earthquakes in the range of ordinal numbers 3200–4200. As shown in Fig. 1.4,

values of d2 decrease for the windows following the largest event. The decrease

begins when a sliding window contains about 20 inter-event time intervals after the

largest event, and becomes significant when 40–50 such events are included in the

sequence. Note that the window 4310–5310, like the window 4300–5300, reveals

the background value of a correlation dimension for waiting time sequences

before the largest earthquake. It seems doubtful to expect that such an essential

change in the dynamical properties of the considered sequence could have been

caused by the addition of so few new data, unless there is a hidden regularity in the

sufficiently long waiting time sequence containing data preceding the largest event.

Next we used RQA approach to further quantify dynamical changes in earth-

quakes energetic and temporal distributions in Javakheti region. As shown in

Figs. 1.5 and 1.6, dynamical changes in earthquakes energetic and spatial distribu-

tions detected before and after Paravani earthquake are very similar to those found

before and after the Racha strong earthquake.
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Indeed, magnitude distribution before the M5.6 earthquake becomes more

regular while temporal distribution becomes noticeably irregular. Also, similar to

the Racha earthquake, changes were observed before the M5.1 earthquake which

may be regarded as an aftershock; namely a decrease in the order of temporal

distribution, while an increase of the order in magnitude distribution is not clear. It

is interesting to mention that the same situation was observed for M5.3 earthquake

preceding the main M5.6 event.

These results indicate that measuring of dynamical characteristics of seismic

time series may provide markers having in future a precursory value which

may help in developing modern earthquake prediction approaches [Matcharashvili

et al. 2002].

Thus it is clear that seismicity in two domains (temporal and spatial) out of three

(energetic, temporal and spatial) reveals low-dimensional nonlinear structure. This

and similar results lead to understanding that in spite of extreme complexity, the

processes related to the earthquake generation are characterized by some internal

dynamic structure and thus are not completely random [Smirnov, 1995; Goltz,

1998; Rundle et al. 2000; Matcharashvili et al. 2002]. Despite the proofs that

seismic activity is a non-random process, the physics of internal or external factors

involved is still poorly understood, but it can be asserted that the general problem of
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earthquake prediction and/or earthquake triggering, one of the most challenging

targets of nowadays science, should not be further considered as an “alchemy of

present time” [Geller, 1999]. In other words, the quest for earthquake predictive

markers or triggering factors should be recognized as obviously difficult, though

scientifically well grounded task related to the search for determinism in the

complex seismic process.
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