
Chapter 3

Shear Oscillations, Rotations and Interactions

in Asymmetric Continuum

Roman Teisseyre

Abstract A concise asymmetric continuum theory including the relations between

stresses, strains, interaction fields and defects is presented. In the presented theory,

the motion equations for antisymmetric part of stresses replace the balance of angular

momentum. Considering the symmetric stresses, we present a new form of themotion

equations for the deviatoric part of strains, arriving at the definition of shear-

twist motion as the oscillation of the axes of shears and their amplitudes. With the

help of Dirac tensors we present an invariant form of these motions. The motions –

displacement and rotations – generated in source processes, e.g., in an earthquake

source, may be generated independently or with some phase shift due to the rebound

processes; therefore, in the presented asymmetric continuum theory we introduce the

phase shift index between the strains and rotations. The presented invariant system of

motion equations makes it possible to obtain solutions with the simultaneous strains

and rotation motion or those with the p/2 phase shift between them.

Further, we include in this asymmetric theory, besides the mechanical system,

some interaction fields, e.g., thermal and electric interaction.terms. The presented

interaction theory is equivalent to that given by Kröner, but it is practically much

simpler and includes new solutions with the simultaneous strains and rotation

motions or those with the phase shift between them.

3.1 Introduction

We present some elements of the asymmetric continuum theory with some

important applications; our consideration on the asymmetric continuum theory
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– balance laws for the symmetric and antisymmetric stresses and related wave

fields

– fundamental relations between the asymmetric stresses and dislocation fields

– hypothesis of a synchronization process based on the rebound processes and

the wave

– solution with the phase shift between strains and rotations

– interaction of physical fields with a mechanical system; our consideration is

limited to the thermal and electric interaction.terms.

The presented theoretical study generalizes those presented by Teisseyre (2008),

Teisseyre (2009), and Teisseyre and Gorski (2009).

3.2 Asymmetric Continuum

Our asymmetric theory differs essentially from the other approaches; e.g., the

theory of asymmetric elasticity founded by Nowacki (1986); it includes the couple-

stresses introduced in a similar way as in the micropolar and micromorphic theories

(see: Eringen, 1999).

A search to improve the classic continuum theory is based on the numerous

defaults of the classic theory. We can add here one more example of such defaults,

as pointed out by Roux and Guyon (1985). Those authors compared various

numerical simulations with the experimental data related to electric and mechanical

coupling; some especially poor results concern the cases in which the momentum

effects play an essential role. The authors suggest that the angular elasticity should

be taken into account. Making the reference to the publication by Crandall et al

(1978), they suggest that the elastic energies related to normal and shear forces

should be supplemented by the terms including the flexion torque and torsion torque

when constructing a more general definition of the Hamiltonian.

Our version of the asymmetric theory includes the asymmetric stresses, symmetric

strains and rotations; it permits to include the phase shift between the displacement

and rotation motions. As regards the constitutive laws joining the antisymmetric

stresses and rotations we follow some ideas introduced by Shimbo (1975; 1995) and

related consideration on the friction processes and rotation of grains.

We have constructed our theory (Teisseyre, 2009) as based on the asymmetric

stresses, Skl, and deformations: symmetric strains, Ekl, and antisymmetric rotations,okl:

Skl ¼ SðklÞ þ S½kl�; Ekl ¼ EðklÞ; okl ¼ o½kl� (3.1)

We underline that the deformation energy becomes related also to rotation

motions:

E ¼ 1

2
Skl Ekl þ oklð Þ ¼ 1

2
SðklÞEkl þ 1

2
S½kl�okl
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Instead of the Kröner method (Kröner, 1981) based on the self-fields, we

introduce the material structure indexes, e0and w0, which may help us to join the

deformation fields, strains and rotations, with the observed displacement motions:

Ekl ¼ e0E0
kl ¼ e0

1

2

@

@xk
ul þ @

@xl
uk

� �
;

okl ¼ w0o0
kl ¼ w0

@

@xk
ul � @

@xl
uk

� � (3.2)

For e0 ¼ 1and w0 ¼ 0, we return to classic elasticity, while for e0 ¼ 0 and

w0 ¼ 1 we will have a continuum with rigid, densely packed spheres with friction

sensitive to an external moment load. The independent fields (Ekl; oklÞ lead us to

defects and extreme deformations.

In our theory, for solid elastic bodies we put:

e0 ¼ 1; Ekl ¼ E0
kl; okl ¼ w0o0

kl (3.3)

where the phase index w0 may vary from 0 to �1 or �i.

The Shimbo (1975) consideration helps us to present the constitutive relations:

SðklÞ ¼ ldklEss þ 2mElk; S½kl� ¼ 2mokl; SDðklÞ ¼ 2mED
kl; (3.4)

where symbols SDðklÞ and ED
kl mean the respective deviatoric tensors, e.g.,

SDðklÞ ¼ SðklÞ � 1
3
dklSss.

Now, we can consider the motion equations for asymmetric stresses (Teisseyre,

2009). The motion equation for the symmetric part of stresses, @SðklÞ=@xk ¼ r@2ul=

@t2 þ Fl � @p=@xl, leads to the relation:

@2

@xn@xl
lEssþm

@2

@xk@xk
Enlþ @2

@xl@xn
Ess

� �
¼ r

@2

@t2
Enlþ 1

2

@Fn

@xl
þ@Fl

@xn

� �
� @2

@xn@xl
p

(3.5)

This expression can be divided into the wave equations for the axial and

deviatoric strains:

lþ 2mð Þ @2

@xk@xk
Ess � r

@2

@t2
Ess ¼ � @2

@xk@xk
p at

@

@xs
Fs¼ 0 (3.6)

m
@2ED

nl

@xk@xk
� r

@2ED
nl

@t2
¼ � lþmð Þ @2Ess

@xn@xl
� dnl@2Ess

3@xk@xk

� �
þ 1

2

@Fn

@xl
þ @Fl

@xn

� �

� @2p

@xn@xl
� dnl@2p

3@xk@xk

� �
(3.7)

We shall note that in Teisseyre (2008 and 2009) the last relation was presented

with some mistakes.
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The balance relation for the antisymmetric stresses S½ni� can be deduced from the

balance of the stress moment (Teisseyre, 2009):

1

l2
@Mlk

@xk
¼ elki

@2

@xk@xn
S½ni� ¼ relki €oki þ elkiK½ki� ¼ relki €oki þ 1

2

@Fi

@xk
� @Fk

@xi

� �
(3.8)

where l is the characteristic Cosserat length, K½ki� is a couple of external forces and
an angular moment, Mlk, is defined as the gradient of the antisymmetric stresses,

Mlk ¼ elki @
@xn

S½ni�.
For the balance law we can write now:

@

l2@xk
Mlk ¼ elki@2

@xk@xn
S½ni� ¼ elki@2

@xn@xn
S½ki� ¼ relki €oki þ elkiK½ki�;

or

mDoki � r€oki ¼ K½ki� (3.9)

where the transformation we made, elki@2oni

@xk@xn
! elki@2oki

@xn@xn
, is valid for any

antisymmetric non-source fields, @os=@xs ¼ 0 (where ol ¼ 1=2elkioki) and at the

compatibility condition eimkejns @2

@xm@xn
oks ¼ 0.

The final relation (3.9) replaces that for the stress moment.

Experimental evidences for the appearance of rotation and shear oscillation

(sometimes called the shear-twist) in a seismic field is based on the records of

seismic rotation fields (see: Teisseyre at al.(eds), 2006; Teisseyre, 2009, Teisseyre

K.P., 2007).

3.3 Rotation and shear-twist motions

The rotation motion is governed by equations (3.9), while relation (3.7) for the

shear deviatoric strain, ED
ik, transformed to its off-diagonal form, achieved in a

special coordinate system, may be replaced by the shear-twist pseudo-vector, ~Es:

f ~Esg ¼ fED
23; ED

31; ED
12g

(3.10)

However, we can maintain this definition as an invariant form for any system

with the help of the Dirac tensors; the 4D invariant tensor, ~Elk, built initially in the

special system (3.10), may now be defined as:
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~Elk ¼ i ~E1g1 þ i ~E2g2 þ ~E3g3 ¼
0 ~E3 � ~E2 � ~E1

� ~E3 0 ~E1 � ~E2

~E2 � ~E1 0 � ~E3

~E1
~E2

~E3 0

2
664

3
775 (3.11)

where the values f ~Esg are treated as the scalars found in the off-diagonal form

(3.10); the Dirac tensors of the antisymmetric type, as used here, are given as

follows:

g1 ¼ i

0 0 0 1

0 0 �1 0

0 1 0 0

�1 0 0 0

2
664

3
775; g2 ¼ i

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

2
664

3
775; g3 ¼

0 1 0 0

�1 0 0 0

0 0 0 �1

0 0 1 0

2
664

3
775

We have chosen the antisymmetric Dirac tensors to enable a comparison with

the rotation field o. Using these definitions we can write for the antisymmetric

tensor ~Elk the relations equivalent to eq. 3.7 (Teisseyre, 2009):

mD ~Elk � r
@2

@t2
~Elk ¼ Ylk (3.12)

where according to (3.7) we will have

Ylk ¼ iY23g1 þ iY31g2 þ Y12g3 ¼

0 Y12 �Y31 �Y23

�Y12 0 Y23 �Y31

Y31 �Y23 0 �Y12

Y23 Y31 Y12 0

2
6664

3
7775

and

Ylq ¼ � lþmð Þ @2Ess

@xl@xq
� dlq@2Ess

3@xk@xk

� �
þ 1

2

@Fn

@xl
þ @Fl

@xq

� �
� @2p

@xl@xq

� �

Note that there remains an influence of the axial stresses on the deviatoric field.

The shear-twist, ~Es, means the off-diagonal oscillation of shear axes and its

amplitude as caused by internal processes. In the special coordinate system, in

which we have simplified the deviatoric strains to the off-diagonal form, ~Es, we

have now defined the shear-twist invariant vector form.

The rotation and twist motions form the complex rotation tensor; the related

relations joining these fields follow from the standard conservation law in 4D:

~olk ¼ olk þ i ~Elk;
@

@xk
~olk ¼ 4p

V
Jl; xl ¼ fx1; x2; x3; x4g; x4 ¼ iVt (3.13)

3 Shear Oscillations, Rotations and Interactions in Asymmetric Continuum 39



or

@

@xk
olk ¼ 4p

V
Jl;

@

@xk
~Elk ¼ 0; xl ¼ fx1; x2; x3; x4g; x4 ¼ iVt (3.13a)

where we introduced the defect-related current field, Jk, and velocity, V, under the
condition that this velocity will be transformed according to the relativistic rules for

a sum of velocities.

This system of equations can be split into the twist and rotation Maxwell-like

equations:

rot o� d~o
Vdt

¼ 4pJ; rot ~oþ do
Vdt

¼ 0 (3.14)

where the related velocity depends on the interaction between the rotations and

the shear-twist pseudo-vector oscillations of the compression-dilatation axes (or the

shear axes shifted by p/4). Note that both fields, rotation and shear, have the

azimuth dependent amplitudes.

For the wave equations we obtain:

Do� @2

V2@t2
o ¼ � 4p

V
2npq

@

@xp
Jq; D~o� @2

V2@t2
~o ¼ 4p

V2
_Jn þ 4p

@

@xn
r (3.15)

where ~os � ~Es and os present the shear-twist and rotation vectors, respectively,

the current relates to defect flow, e.g., dislocations, and r relates to defect density.

The idea that the rotation-related amplitudes may differ from the P or S waves

arises after experimental study on the velocity of rotation waves (K.P. Teisseyre,

private communication, 2009). The relations (3.14) indicate that the rotation wave

velocity, V0, appears as an effect of the mutual interaction between the rotations and

shear-twist rotational oscillations.

After Teisseyre et al. (2008) we may write the local solution of the system (3.14)

for the twist and spin waves shifted mutually in phases:

os ¼ �i~os; os ¼ o0
s exp½iðkixi � �otÞ; ~os ¼ ~o0

s exp½iðkixi � �otÞ� (3.16)

where o0
s ¼ �i~o0

s :
The related waves, os and ~os help us to explain the synchronization of the

micro-fracture phenomena; these conjunct solutions show that one of these motions

will be delayed in phase by p=2: Figure 3.1 gives an example of such a synchroni-

zation (K.P. Teisseyre, 2007).

Finally, let us note that when comparing our theoretical approach with the

experimental measurements obtained, e.g., from the strain-meter or rotation-

seismograph systems (strain determination on one plane requires a set of 3 instru-

ments), we should transform these experimental data to the off-diagonal shear

values.
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3.4 Dislocations and disclinations: fragmentation and cracks

In our former papers (Teisseyre 2001, Teisseyre, 2008, Teisseyre and Boratyński

2003) we have introduced the definition of the twist-bend tensor, wmq:

wmq ¼ eksq
@omk

@xs
(3.17)

which differs from that introduced by Kossecka and DeWitt (1977); according to

their definition, the Burgers and Frank vectors would vanish when defining the

defects from the twist-bend tensor.

Our definitions, describing the dislocation nuclei, help to obtain the Burgers and

Frank vectors and dislocation and disclination densities directly from (3.17):

Bl ¼
I

Ekl þ okl½ �dlk and Oq ¼
I

wpqdlp ¼
ð ð

ypqdsp (3.18)

and with the definition

Bl ¼
ð ð �

apl � 1

2
dplass

�
dsp (3.19)

we obtain the expressions for the defect densities (cf., eq. 3.2):

106.5 107.5s

s
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97.5 98.598
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–H

Fig. 3.1 An example of

synchronization between the

rotations and shear-twist

oscillations obtained by

applying the Hilbert

transform (H)
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apl � 1

2
dplass ¼ epmk

@

@ xm
Ekl þ okl

� � ¼ epmk
@

@ xm
e0E0

kl þ w0o0
kl

� �
; ypq ¼ 0

(3.20)

and relation with stresses (Teisseyre, 2008),

apl � 1

2
dplass ¼ epmk

2m
@

@xm
SðklÞ � n

1þ n
dklSii þ S½kl�

� �
(3.21)

Another definition of the defect nuclei for the twist-bend tensor can introduce the

vortex defects with the specific dislocations and disclinations; when defining:

wmq ¼ 1

l
omq (3.22)

we obtain the same expression for dislocation field, but different for disclinations

(cf., eq. 3.20):

ypq ¼ epmk
@wkq
@ xm

¼ 1

l
epmk

@okq

@ xm
¼ 1

l
epmkekqs

@os

@ xm
¼ � 1

l

@op

@ xq
(3.23)

Disclinations related to gradient of rotation become the vortex-defects. An array

of the vortex-defects can help us to approximate the fragmentation/cracks (similarly

as an array of dislocations approximates a crack).

Finally, we obtain the relation for disclinations and antisymmetric stresses as

follows

ypq ¼ 1

l
epmk

@okq

@ xm
¼ 1

2m
epmk

@S½kq�
@ xm

(3.24)

3.5 Interaction fields

First, we recall that the two independent fields, Elk and okl, or equivalently,
~Elk and olk, subjected together to the equations of motions (eqs. 3.6, 3.7, 3.9 or

3.13), can be directly coupled by the phase-delayed solution as written in special

off-diagonal coordinate system (3.16):

ED
kl ¼ �iokl (3.25)

Presenting the theory of interaction processes we can write a very general form

of the constitutive laws (Teisseyre, 2008):
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SðklÞ ¼ 2m e0E0
kl þ e0dklH þ e00HðklÞ

� �
; S½kl� ¼ 2m w0o0

kl þ w0eklsGs þ w00G½kl�
� 	

(3.26)

where E0
kl ¼

�
@ul
@xk

þ @uk
@xl

�
; o0

kl ¼
�
@ul
@xk

� @uk
@xl

	
and H; HðklÞ; Gs; G½kl� are the non-

mechanical stress-influencing fields; the constants we introduced, e0; e0; e00 and
w0; w0; w00, are the phase constants which may vary from 0 to � 1or� i. According

to standard asymmetric theory, we relate the strain and rotation with displacements

according to eq. 3.2.

However, considering the specific cases separately we can assume that an

influence of the mechanical fields, E0
kl or o0

kl, on the other physical fields (e.g.,

electric ones) is direct; therefore, it will be enough to assume that the phase shift

constants are equal: e0 ¼ e0 ¼ e00 and w0 ¼ w0 ¼ w00. This assumption means that

the interaction between the deformations and non-mechanical fields proceeds

without a delay (no phase shift), while the coupling between the mechanical fields

themselves may occur with the phase delay, as given in relation (3.25) describing

the release-rebound process.

Therefore, further on, instead of (3.26), we write:

SðklÞ ¼ 2mEkl ¼ 2me0 E0
kl þ dklH þ HðklÞ

� �
;

S½kl� ¼ 2mokl ¼ 2mw0 o0
kl þ eklsGs þ G½kl�

� � (3.27)

Thus, in our approach the elastic deformation fields can be defined as follows:

Ekl ¼ e0 E0
kl þ dklH þ HðklÞ

� �
; okl ¼ w0 o0

kl þ eklsGs þ G½kl�
� 	

(3.28)

The symmetric and antysimmetric stresses remain to be given, in an elastic

regime, by relations (3.4).

We should keep in mind that, in the Kröner metod, the physically significant

elastic fields, Sks; Eks; oks, are given by the differences between the total fields,

S0ks; E
0
ks; o

0
ks (related directly to the displacement differentials), and the self fields,

SSks; E
S
ks; o

S
ks (related to internal interaction nuclei): Sks ¼ S0ks � SSks; Eks ¼ E0

ks � ES
ks;

oks ¼ o0
ks � oS

ks.

It is only the total field that preserves the usual symmetry properties: elastic and

self fields may be asymmetric. A comparison of our approach and that used used in

the Kröner method was given by Teissyere (2008); we recall here only that the

interaction fields in the Kröner theory enter through the self-nuclei whose fields

appear in the self- stress, self-strain and self-rotation fields; the relation between the

total, elastic and self fields is the following:

STks ¼ SEks þ SSks; ET
ks ¼ EE

ks þ ES
ks; oT

ks ¼ oE
ks þ oS

ks

In the Kröner theory, the elastic fields represent the physical fields; the total field

preserves the usual symmetry properties, while the elastic and self fields may be

asymmetric.

In our approach the stresses are asymmetric, as explained at the beginning.
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3.6 Direct relations between defect and electric fields

Returning to the derived relations (3.21) and (3.24) we rewrite them, by virtue of

(3.27), as:

e0epmk
@

@xm
E0
kl þ dklH þ HðklÞ

� �� n
1þ n

dkle0 E0
ii þ 3H þ HðiiÞ

� �� �
þ

w0epmk
@

@xm
o0

kl þ eklsGs þ G½kl�
� � ¼ apl � 1

2
dplass

(3.29)

and

w0epmk
@

@ xm
o0

kl þ eklsGs þ G½kl�
� � ¼ ypq (3.30)

These relations could be used as the differential equations for a chosen non-

mechanical field (selected from the set: H;HðklÞ; Gs; G½kl�) to estimate directly its

influence on the defect fields (given dislocation and disclination densities); or to

find an influence of defects on the non-mechanical fields.

3.7 Interaction examples

3.7.1 Thermal interaction

For a thermal field, we write a more generalized relation than that in the classic

elastic theory:

SðklÞ ¼ 2me0 E0
kl � dklathðT � T0Þ

� �
; S½kl� ¼ 2mw0o0

kl (3.31a)

Comparing with (3.27) we put

SðklÞ ¼ 2me0 E0
kl þ dklH

� �
; S½kl� ¼ 2mw0o0

kl (3.31b)

where H ¼ �athðT � T0Þ and where for e0 ¼ 1 and w0 ¼ 0 we return to the classic

case.

The equivalent relation between this thermal field and the dislocations becomes:

epml
@

@xm
E0
kl � e0ath

1� 2n
1þ n

ðT � T0Þ
� �

¼ aedgepl (3.32)

and there is no contribution from screw dislocations.
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3.7.2 Piezoelectric effects

The classical piezoelectric effect appears in anisotropic crystals, piezoelectric

dielectrics; after Toupin (1956; see: Mindlin, 1972, Teisseyre, 2001a) we write

the constitutive law as:

Sij ¼ 2mEkl �ekijEk (3.33a)

where Ek is the electric field, ekij are the piezoelectric stress constants.
We can rewrite this relation as follows:

SðijÞ ¼ ldijEss þ 2mEkl�ekðijÞEk; S½ij� ¼ 2mokl�ek½ij�Ek (3.33b)

According to our approach (3.28) we obtain:

Ekl ¼ e0 E0
kl þ hsdklEs þ esðklÞgEs

� �
; okl ¼ w0 o0

kl þ es½kl�gEs

� �
(3.33c)

where we have separated the piezoelectric constant into its symmetric and anti-

symmetric parts and introduced other definitions:

ekij ¼ �2m hkdij þ ekijg
� �

and Hdij ¼ hkdijEk; G½ij� ¼ ekijgEk (3.34)

The equivalent relation between this piezoelectric field and the defect densities

becomes:

e0epmk
@

@xm
E0
kl þ hsdklEs

� �� n
1þ n

dkl E0
ss þ 3hsEs

� �� �
þ w0epmk

@

@xm
o0

kl þ esklgEs

� �

¼ apl � 1

2
dplass

(3.35a)

epmk
@wkq
@ xm

¼ 1

l
w0epmk

@

@ xm
o0

kq þ eskqgEs


 �
¼ ypq (3.35b)

We note that the piezoelectric constants for various crystallographic classes have

been discussed by Nowacki (1983).

3.7.3 Polarization gradient theory

According to Mindlin (1972), the internal energy depends also on the polarization

gradient; we can write:
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Pij ¼ @Pi

@xj
(3.36)

where polarization, Pi ¼ Di � eEi, is defined by difference of electric displace-

ment, D, and electric field, E, with e being the permittivity of vacuum. The gradient

theory, related to electric polarization, makes use of the fact that, under the applied

load, the displacements of a moving dislocation core (electrically charged) influ-

ence the surrounding defect cloud (such a cloud shall have the opposite charge,

compensating that of a dislocation core).

The constitutive relations (Mindlin, 1972; Nowacki,1983) with the respective

material constants can be written as follows:

Sij ¼ 2mEij þ fkijPk þ dklijPkl (3.37)

and, according to relations (1-3), can be generalized for the asymmetric stresses to

the following form (cf., Teisseyre, 2001):

SðijÞ ¼ ldijEssþ2mEijþ fkðijÞPkþdklðijÞPkl; S½ij� ¼ 2moijþ fk½ij�Pkþdkl½ij�Pkl (3.38)

Now, we can present the contributions to the asymmetric strains and rotations

caused by the electric polarization coupling:

Eij ¼ e0 E0
ij þ

1

2m
fkðijÞPk þ 1

2m
dklðijÞPkl

� �
(3.39a)

oij ¼ w0 o0
ij þ

1

2m
fk½ij�Pkþ 1

2m
dkl½ij�Pkl

� �
(3.39b)

For the direct relation with defects we write according to (3.29) and (3.30):

e0epmk
@

@xm

�
E0
kl þ

1

2m
fkðijÞPk þ 1

2m
dklðijÞPkl

� �

� n
1þ n

dkle0
1

2m
fkðssÞPk þ 1

2m
dklðssÞPkl

� ��

þ w0epmk
@

@xm
o0

kl þ eklsGs þ G½kl�
� � ¼ apl � 1

2
dplass (3.40a)

w0epmk
@

@ xm
o0

kl þ eklsGs þ G½kl�
� � ¼ ypq (3.40b)

Moreover, note that some experiments (see: e.g., Hadijcondis and Mavromatou,

1994, 1995) indicate that the anomalous piezoelectric effects, observed in the

laboratory experiments, correspond to the time rate of the applied load.

The problem of magnetostrictive effects can be treated in a similar way.
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3.7.4 Interaction chains: electric and acoustic effects

Finally, we can note that the shear and axial stresses influence (cf., eq. 3.7) the

solution for the deviatoric stresses, ED
nl, and, further on, these strains can influence

the rotation field (cf., eq. 3.14 ); we can express this coupling also by one of possible

solutions of the system (3.16):

olk ¼ �i ~Elk (3.41)

It seems reasonable to believe that the coupling between the mechanical and

electric (or electric polarization) field proceeds in an instantaneous manner, because

such effects follow from the displacement of the ions. However, as shown in (3.29),

the interaction.between the mechanical fields can proceed with a phase delay due

to the release-rebound sequence. Hence, we can have different interaction chains

(cf., eqs 3.7 and 3.12) like, e.g., the following ones:

ED
nl ! ionl ! iPs (3.42a)

where the shears coupled to the phase-delayed rotations lead to polarization effects,

p ! ED
nl ! ionl ! iPs (3.42b)

where a pressure variation (mechanical forcing) initiates a similar chain,

Es ! onl ! iEnl (3.42c)

where the electric field variations force rotation effects and the micro-strain releases

revealed by the acoustic bursts occurring with the phase delay.

3.8 Conclusions

– We have presented the asymmetric continuum theory including different types

of material states: from elastic continuum to granulated/crushed material.

– We have assumed the balance relation for the antisymmetric stresses as equiva-

lent to that for the stress couple. We have defined the 4D invariant form of the

shear-twist field.

– The spin and the shear-twist oscillation of the off-diagonal shear axes led us to

the relations for the rotation and rotational shear-twist waves.

– We have presented a new definition for dislocation and disclination density field

permitting to derive the relations between the asymmetric stresses and linear

defect densities.

3 Shear Oscillations, Rotations and Interactions in Asymmetric Continuum 47



– We have presented a new relation for the interaction between the strains and

rotations and other physical fields; these relations are more general than those

between the stresses and some physical fields as, in this new approach, we

consider the asymmetric fields and also we may include a phase shift when a

rebound process provoked by some energy release shall be considered.

– The direct relations are given between the defect densities and the non-

mechanical fields.

– Some examples are given for the interaction between the strains or rotations on

the one side, and the electric and electric polarization fields on the other.

– The experimental evidence for the appearance of spin and twist motion in a

seismic field is based on the records of the seismic rotation fields (see: Teisseyre

at al., 2006; Teisseyre K.P, 2007). Comparison between the experimental data

(e.g., strain variation in time as can be obtained from the strain-meter or

rotation-seismograph systems) and theoretical consideration on twist field

(shears in the off-diagonal system) require transformation of the obtained

theoretical twist motion values to the diagonal shear ones.

– The asymmetric continuum theory includes description of the states close to

micro-fracture processes; the hypothesis on the local synchronization, related to

the special complex solution for the rotation and twist fields, is confirmed by

some correlations observed between the recorded twist and spin seismic wave

groups.
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