
Chapter 2

Models of Stick-Slip Motion: Impact

of Periodic Forcing

T. Chelidze and N. Varamashvili

Abstract The modern concept of seismic processes relays mainly on the model of

frictional instability, which develops on the preexisting tectonic fault, in contrast to

the earlier assumptions on the brittle fracture of the crust material attaining the

critical stress.

The Ditrich-Ruina equation for shear stress describes almost all main features of

slip, obtained in numerous experiments: it shows that the frictional force is not a

constant, but is time-dependent and undergoes complex evolution during the slip

event. The equation is nonlinear, and consequently the slip process should manifest

such properties as high sensitivity to weak external forcing, hysteresis effect, etc. It is

quite natural that the instabilities of friction excite vibrations, including acoustic

emission (AE). The AE is expected to occur during slips and be absent during stick

phase. We presume that acoustic measurements may reveal the fine details of friction

mechanism, which are beyond the reach of direct displacement-measuring techniques.

The additional forcing, which can be much smaller than the main driving force,

may provoke triggering and synchronization during stick-slip process, which means

that these phenomena are invoked by nonlinear interaction of objects. An attempt to

compile and analyze the rate- and state slip equation taking into account the

periodic forcing is made.

2.1 Introduction

It is well known from the surface physics that the friction (adhesion) force Ff is a
result of intermolecular and intersurface forces of mainly electromagnetic origin:

(i) purely electrostatic (Coulomb) forces, (ii) polarization due to the induced dipole

moments, and (iii) quantum-mechanical forces. Friction results in transmission and
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dissipation of energy. Kinetic energy of motion is converted into thermal energy

mostly by acoustic processes. Instability in sliding occurs when the friction pumps

to the system more energy than can be dissipated by the stationary process.

The modern concept of seismic process relays mainly on the model of frictional

instability, which develops on the preexisting tectonic fault, in contrast to the

earlier assumptions on the brittle fracture of the crust material at attaining

the critical stress. The first simple friction models suggested by Amonton and

Coulomb were refined by Hubert and Rubbey (1979), Brace and Byerlee (1966),

Burridge and Knopoff (1967), Dieterich (1979) and Ruina (1983): the capsule

story of friction models, showing main stages of development in this area, is

presented in Table 2.1.

Here t and sn are shear and normal stresses, respectively, m is the friction

coefficient, c is the adhesion term, Pp is the pore pressure, V and V0 are current

and initial velocities of drag, Y is the state variable, D0 is the critical slip distance,

and a and b are constants.

The last expression for shear stress describes almost all main features of slip,

obtained in numerous experiments: it shows that the frictional force is not a

constant, but is time-dependent and undergoes complex evolution during slip

event. The equation is nonlinear, and consequently the slip process should manifest

such properties as high sensitivity to weak external forcing, hysteresis effect, etc.

2.2 Main details of experimental stick-slip results

Depending on conditions (spring stiffness k, velocity of drag V, normal stress sn, slip
surface state y), three main types of friction are observed by displacement recording:

stick-slip, inertial regime, and stable regime. Figure 2.1 shows spring deflection dx,
top plate position x and its instantaneous velocity V during stick-slip motion.

The stick-slip regime is observed at relatively low velocities V and low stiffness.

At higher V, the transition to inertial periodic oscillations occurs; at still higher Vwe

have the stable sliding with fluctuations.

The single slip events were investigated in detail by Nasuno et al (1997): after

application of tangential force, the velocity of slip drastically increases and then

decreases (Fig. 2.2).

The instantaneous frictional force m(t)¼ Ff /Mg during the slip event experi-

ences hysteresis (Fig. 2.3): during the stick stage, m increases until the static

Table 2.1. A capsule story of friction models:

Time Arrow # Amonton, 1699 t ¼ snm
Coulomb, 1773 t ¼ c þ snm
Hubbert and Rubbey, 1959 t ¼ c þ m(sn � Pp) ¼ c þ smeff
Brace and Byerlee, 1966 t ¼ s0(m0 þ a ln(V/Vo) þ bln( VY/D0))
Burridge-Knopoff, 1967 dY/dt ¼ 1 � (VY/D0)
Dietrich, 1972,

Ruina, 1983
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threshold ms¼ Fs/Mg is attained, and the slip begins. During slip, m decreases to

its kinetic value; after this, at the deceleration stage it drops to the initial value m0
(Nasuno et al. 1998).
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Fig. 2.2 The slip velocity evolution during single slip event for various driving velocities

V ¼ 56.67; 113.33; 566.64 and 1133.27 mm/s (Nasuno et al. 1997)
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Fig. 2.1 Spring deflection dx top plate position x and its instantaneous velocity V during stick-slip

motion (Nasuno et al. 1997)
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Mean period of stick-slip motion T depends on the drive velocity V and spring

stiffness k; T � 1/V at low V and T decreases with increase of k (Fig. 2.4; Nasuno
et al. 1998).

For understanding the physics of stick-slip motion it is very interesting to note

that each slip is connected with relatively slow vertical displacement of Dv of the

(top) sliding plate relative to the fixed lower plate; it is evident that the maximum of

Dv precedes the maximum of tangential velocity Vt. This means that before the slip

in horizontal direction, the top plate is rising up; evidently, the plate is ascending

and the large asperities, which prevent slip and the slip displacement, occur

at reaching the critical number of contact points (threshold). This suggestion is

confirmed by the above-mentioned experimental evidence of small vertical dis-

placement preceding the slip event (Fig. 2.5), which means that the number of

contact points n decreases to some threshold value nc making possible the
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Fig. 2.4 Dependence of slip recurrence period T on velocity V and stiffness k (Nasuno et al. 1998)

0.3

0 5

Velocity v (mm/s)
10 15 20

0.4

0.5

0.6

B

C C'

F
ri

ct
io

n
al

 f
o

rc
e 

m

0.7

ms

Fig. 2.3 Frictional force m versus slip velocity during a slip event (Nasuno et al. 1998)
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macroscopic tangential displacement. The mathematical formalism, similar to that

of percolation model of fracture, could be developed for the slip process (Chelidze,

1986). It seems that the percolation theory, namely, the model of percolation for

tangential shift of contacting fractal surfaces, may explain the transition of friction

coefficient from the static to kineticvalue at attaining some critical value of contact

points of shearing fractal surfaces. In Chelidze (1986) the guess is given about a

possibility of applying the percolation model of fracture to tectonic fault dynamics.

It is quite natural that the instabilities of friction excite vibrations, including

acoustic emission (AE). The reverse effects are also observed, namely, vibrations

affect the friction (Akay, 2002; Chelidze, Varamashvili et al., 2002; Chelidze and

Lursmanashvili, 2003; Chelidze, Gvelesiani et al., 2004; Chelidze, Matcharashvili

et al., 2005; Chelidze and Matcharashvili, 2007; Chelidze, Lursmanashvili et al.,

2006). We presume that acoustic measurements may reveal the fine details of

friction mechanism, which are beyond the reach of direct displacement-measuring

techniques. The situation is similar to brittle fracture studies, where AE is much

more sensitive to micro-fracturing than traditional stress-strain experiments.

In this connection, we presume that the so-called stable sliding is not stable at all,

but involves fast micro-events that can not be registered by (slow) displacement

sensors.

2.3 Mathematical models of friction

The mathematical expressions for the shear stress t, formulated by Dietrich and

Ruina (Table 2.1) are in agreement with the majority of observed data on stick-slip.

It is shown that for some critical stiffness kc the system undergoes Hopf bifurcation,

leading finally to instability. The solution of the system in this case demonstrates all

details, characteristic for (chaotic) nonlinear dynamics (Becker, 2000).

An analysis of the experimental data obtained by investigating of spring-slider

system motion has led to empirical law, named rate- and state-dependent friction
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Fig. 2.5 Vertical displacement Dv and tangential velocity Vt of the top plate versus time (Nasuno

et al. 1998)
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law (Dieterich, 1979; Ruina, 1983). When the sliding velocity is changed in

laboratory friction experiments, two effects are seen to occur to the dynamic

coefficient of friction (Bureau et al, 2000; Kanamori and Brodsky, 2004; Boettcher

and Marone, 2004). First, there is a “direct” effect that opposes the change in

velocity. Hence, if the velocity is increased, the dynamic friction coefficient

will correspondingly rise (Fig. 2.2). If the sliding velocity is reduced, the dynamic

friction coefficient will drop. This can be described as “rate-dependent friction”.

The second effect refers to the fact that, after abrupt changes in velocity, the

frictional resistance evolves to a new steady state over a characteristic slip distance

D0; this is termed “evolution effect”.

The rate and state dependent friction can be quantified as follows (Dieterich,

1979; Ruina, 1983; Kanamori and Brodsky, 2004; Scholz, 1998).

t ¼ so mo þ a ln
V

Vo

� �
þ b ln

Voy
Do

� �� �
; (2.1)

where m0 is the initial coefficient of friction, V is the new sliding velocity, V0 is the

initial sliding velocity, y is the state variable, D0 is the critical slip distance, and a
and b are two experimentally determined constants.

The state variable varies according to:

dy
dt

¼ 1� Vy
Do

(2.2)

In the spring-slider model, dependence of upper sliding plate velocity on time

can be graphically presented as shown in Fig. 2.6:

For qualitative analysis of processes, in the transient area between stages 1 and

2 (near stage 2), the equation of motion for this system, under the assumption

of yV
D0

���
��� � 1, can be written as (Kanamori and Brodsky, 2004):

so mo þ a ln _xþ b ln yo � b

Do
x

� �
¼ �kxþ kxo; (2.3)

where _x represents displacement, x0 the spring elongation, and k the spring

stiffness.

By integration of (2.3) for the initial conditions x ¼ 0 and _x ¼ _x0 for t ¼ 0, we

obtain:

V

1 2

t
Fig. 2.6 Velocity vs. time

during a stick-slip motion
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_x ¼ 1

_xo
�Ht

a

� ��1

where H ¼ � k

so
þ b

Do
(2.4)

From (2.4) it follows that the sliding velocity spontaneously increases at the time

tf ¼ a
H ð1= _x0Þ: That is system’s destabilizing (relaxation) time. We can say that tf is

a period of stick-slip for our system.

In the case of addition of periodical normal forcing to the main driving force, we

can write the equation of motion for our system in the following way (Bureau et al.

2000; Varamashvili and Simonishvili, 2005; Varamashvili, 2006; Putelat et al.,

2007):

m
d2x

dt2
¼ kðVt� XÞ �W mo þ ao ln

V

Vo

� �
þ bo ln

yVo

Do

� �� �
(2.5)

dy
dt

¼ 1� yV
Do

� aW

bW
y (2.6)

whereW ¼ Woð1þ e cosðotÞÞ; W0e is the amplitude of forcing, o is the frequency

of forcing, and T ¼ 2p
o is the period of forcing.

In the received system we will solve equation (2.6) to obtain T and we will insert

the obtained solution into equation (2.5). For definite parameters from equation

(2.5) we obtain the following equation:

€xþ 0:1t _xþ 100t _xþ 100x� 45� 2 ln 1þ sec
t

4

� �2� �
¼ 0 (2.7)

We solved equation (2.7) using numerical method and the solution is presented

in graphic form in Fig. 2.7.

In Fig. 2.7, on the X axis is the current time, and on the Y axis the displacement.

From this figure it is evident that for the given parameters the displacement is

periodic and decreasing. In fact, experiments show that the stick-slip process has a

quasi-periodic character. To simulate the quasi-periodic process we enter periodic

normal pressure into equation (2.6) with one-order larger period than the period of
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Fig. 2.7. Periodic and

decreasing displacement of

sliding plate
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natural stick-slip at corresponding parameters. The idea is to simulate roughness of

adjoining surfaces by large period normal loading (we presume that the roughness

of surfaces leads to quasi-periodicity of stick-slip process). By means of change of

parameters we can try to simulate sliding surfaces of blocks. For definite parameters

in equation (2.5) we receive the following equation:

€x þ 6 logð _xÞ þ 1:7t _x þ 6:8x � 10:9 log sec
t

2

� �2� �
þ 3 cosð0:0999tÞ logð _xÞ

þ 3 cosð0:0999tÞt _x þ 3 cosð0:0999tÞ log sec
t

2

� �2� �
¼ 0 ð2:8Þ

By solving this equation numerically and presenting the solution graphically, we

get Fig. 2.8.

From Fig. 2.8 it is evident that for given parameters the stick-slip process has a

quasiperiodic character that reflects experimental data.

For further processing of the method we should try to go from the qualitative

agreement of theoretical data with experimental ones to their quantitative conformity.

For solving this system of differential equations (eqs. 2.5 and 2.6), we should

make it dimensionless. We introduce dimensionless variables in the following way:

dimensionless coordinate is x ¼ X
xs
, where xs is coordinate center of mass of the

upper plate in the steady state, dimensionless time is t ¼ t
T , where T is the period of

forcing, dimensionless velocity is v ¼ V
vs
, where vs is the velocity of the steady state,

dimensionless state variable is # ¼ y
ys
, where y ¼ D0

vs
is the state variable at the

steady state, characteristic length is l ¼ vsT. After making equations (2.5) and (2.6)

dimensionless we obtain:

d2x

dt2
¼ b1ðt

dx

dt
� xÞ � b2ð1þ e cosð2ptÞÞ 1þ a ln

v

vo

� �
þ b ln b3

#vo
do

� �� �
(2.9)

d#

dt
¼ T

ys
� #v

do
� ao
bo

#; (2.10)
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Fig. 2.8 Quasiperiodic

displacement of sliding plate

according to equation (2.8)
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with the dimensionless parameters

vo ¼ vo
vs
; a ¼ ao

mo
; b ¼ bo

mo
; do ¼ Do

i
;

b1 ¼
kT2

m
; b2 ¼

WomoT
2

mx5
; b3 ¼

ysvs
i

;

If the forcing amplitude is small as compared to the constant component ( e<< 1),

we can use perturbation theory and write the coordinate, velocity center of mass of

the upper plate, and the state variable as:

x ¼ 1þ dx; v ¼ 1þ dv; # ¼ 1þ d#

where dx, dv, d# are small additions.

After simple transformation, equation of the upper plate center mass motion in

first order of perturbation theory comes to the equation for harmonic oscillator with

variable external force and friction:

d€xþ g1ðtÞd _xþ g2ðtÞdx ¼ f ðtÞ (2.11)

where

g1 ¼ ½b1t� ab2ð1þ e cosð2ptÞÞ�;

g2 ¼
b

d0
b2ð1þ

do
b
þ e cosð2ptÞÞ;

f ðtÞ ¼ b1 þ b2ð1þ e cosð2ptÞÞ 1� a ln vo þ b ln
b3vo
do

þ b

d2o
e

1
do
t

�

�
ðt

o

dxe
1
do
tdtþ 2pea

b
e
�1
do

ðt

o

e
1
do
t sinð2ptÞ
1þ e cosð2ptÞdt

�
(2.12)

If the variable external forcing is zero, then one of the solutions of homogeneous

equation for harmonic oscillators presents Hermitian polynomial.

The general solution of inhomogeneous equation of second order is:

€zþ PðtÞ _zþ QðtÞz ¼ FðtÞ (2.13)

The general solution for homogeneous equation of harmonic oscillator is:

z0ðtÞ ¼ Az01ðtÞ þ Bz02ðtÞ
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where Z0
1 tð Þ presents Hermitian polynomial, and Z0

2 tð Þ can be expressed through

Z0
1 tð Þ using the known relation:

zo2ðtÞ ¼ zo1ðtÞWð0Þ
ðt

o

e
�
R t0

o
Pdt00

z1ðt0Þ2
dt0

where W is Wronskian.

The general solution of inhomogeneous equation (2.13) is the sum of partial

solution of inhomogeneous equation z1 tð Þ and general solution of homogeneous

equation z0 tð Þ:

zðtÞ ¼ z0ðtÞ þ zoðtÞ

where

z0ðtÞ ¼
ðt

0

z02ðtÞz01ðt0Þ � z01ðtÞz02ðt0Þ
W

Fðt0Þdt0

The solution of eq. (2.13) is quite complicated, but it can give new insights in the

dynamics of stick-slip motion.
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