PROGRAMME AND ABSTRACTS

The 7th General Assembly of Asian Seismological Commission
and
The 2008 Fall meeting of Seismological Society of Japan

24 (Mon.) - 27 (Thu.) November, 2008
Tsukuba International Congress Center
Tsukuba, Japan

Organizers
Asian Seismological Commission (ASC), IASPEI
Seismological Society of Japan

Cosponsors
Japan Society for the Promotion of Sciences
International Association of Seismology and Physics of the Earth's Interior
International Union of Geodesy and Geophysics
Tokio Marine Kagami Memorial Foundation
City of Tsukuba
Commemorative Organization for the Japan World Exposition('70)
Tsukuba Expo'85 Memorial Foundation
Tokyo Geographical Society
Association for the Development of Earthquake Prediction

Alexey Lyubushin (Institute of the Physics of the Earth, B.Gruzinskaya, 10, Moscow, 123995, Russia, lyubushin@yandex.ru)

The results of investigating properties of multifractal singularity spectra of low-frequency microseismic noise based on the analysis of broadband seismic stations F-net data in Japan, 1997 – June, 2008, are presented. Singularity spectra were estimated by DFA-method for vertical components with 1-sec sampling (LHZ-records) within adjacent time intervals of 0.5 hour length. Two parameters are analyzed: \(\Delta \alpha\) – a width of singularity spectra argument interval and \(\alpha^*\) – an argument providing maximum to singularity spectra. For each of 0.5-h time interval a median values (over all stations which have registration) of \(\Delta \alpha\) and \(\alpha^*\) were calculated forming an averaged time series of \((\Delta \alpha, \alpha^*)\)-variations, gathering information from all stations. The time series of \(\Delta \alpha\)-variations has a statistically significant change of its mean value which began 0.5 years before Hokkaido earthquake M=8.3, 25.09.2003. Time series of \(\alpha^*\)-variations estimated for seismic records after coming to 1 minute sampling has a 1-year periodicity before Hokkaido earthquake which disappears after this event. Using analogies with singularity spectra behavior of return-time sequences produced by a system of coupled chaotic oscillators these results are interpreted as a synchronization of low-frequency microseismic noise after Hokkaido event in 2003 which is continuing till now. A question arises whether Hokkaido 2003 earthquake could be a foreshock of future even more strong event in Japan?

Fig. 1. Upper graphics: sequence of strong earthquakes, arrow indicates Hokkaido earthquake. Mean values: bold lines – computed by Gaussian kernel smoothing with radius 0.5 year, light grey lines – with smoothing radius 13 days, of medians of singularity spectra parameter \(\Delta \alpha\) estimated for 1-sec seismic records for singular spectra estimated within adjacent time intervals of 30 minutes length.